Optimal. Leaf size=28 \[ x-4 e^{5+\log ^2\left (\frac {3}{\log (x)}\right )} \log \left (x-\frac {\log ^2(2)}{4}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 2.28, antiderivative size = 84, normalized size of antiderivative = 3.00, number of steps used = 4, number of rules used = 3, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {1593, 6742, 2288} \begin {gather*} x-\frac {4 e^{\log ^2\left (\frac {3}{\log (x)}\right )+5} \left (4 x \log \left (x-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{\log (x)}\right )-\log ^2(2) \log \left (x-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{\log (x)}\right )\right )}{\left (4 x-\log ^2(2)\right ) \log \left (\frac {3}{\log (x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-4 x^2+x \log ^2(2)\right ) \log (x)+e^{5+\log ^2\left (\frac {3}{\log (x)}\right )} \left (16 x \log (x)+\left (-32 x+8 \log ^2(2)\right ) \log \left (\frac {1}{4} \left (4 x-\log ^2(2)\right )\right ) \log \left (\frac {3}{\log (x)}\right )\right )}{x \left (-4 x+\log ^2(2)\right ) \log (x)} \, dx\\ &=\int \left (1-\frac {8 e^{5+\log ^2\left (\frac {3}{\log (x)}\right )} \left (2 x \log (x)-4 x \log \left (x-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{\log (x)}\right )+\log ^2(2) \log \left (x-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{\log (x)}\right )\right )}{x \left (4 x-\log ^2(2)\right ) \log (x)}\right ) \, dx\\ &=x-8 \int \frac {e^{5+\log ^2\left (\frac {3}{\log (x)}\right )} \left (2 x \log (x)-4 x \log \left (x-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{\log (x)}\right )+\log ^2(2) \log \left (x-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{\log (x)}\right )\right )}{x \left (4 x-\log ^2(2)\right ) \log (x)} \, dx\\ &=x-\frac {4 e^{5+\log ^2\left (\frac {3}{\log (x)}\right )} \left (4 x \log \left (x-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{\log (x)}\right )-\log ^2(2) \log \left (x-\frac {\log ^2(2)}{4}\right ) \log \left (\frac {3}{\log (x)}\right )\right )}{\left (4 x-\log ^2(2)\right ) \log \left (\frac {3}{\log (x)}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 28, normalized size = 1.00 \begin {gather*} x-4 e^{5+\log ^2\left (\frac {3}{\log (x)}\right )} \log \left (x-\frac {\log ^2(2)}{4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 25, normalized size = 0.89 \begin {gather*} -4 \, e^{\left (\log \left (\frac {3}{\log \relax (x)}\right )^{2} + 5\right )} \log \left (-\frac {1}{4} \, \log \relax (2)^{2} + x\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 2.09, size = 33, normalized size = 1.18
method | result | size |
risch | \(-4 \ln \left (-\frac {\ln \relax (2)^{2}}{4}+x \right ) \ln \relax (x )^{-2 \ln \relax (3)} {\mathrm e}^{\ln \left (\ln \relax (x )\right )^{2}+5+\ln \relax (3)^{2}}+x\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.63, size = 57, normalized size = 2.04 \begin {gather*} 8 \, e^{\left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2} + 5\right )} \log \relax (2) - 4 \, e^{\left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (x)\right ) + \log \left (\log \relax (x)\right )^{2} + 5\right )} \log \left (-\log \relax (2)^{2} + 4 \, x\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.51, size = 37, normalized size = 1.32 \begin {gather*} x-4\,{\mathrm {e}}^{{\ln \relax (3)}^2}\,{\mathrm {e}}^5\,{\mathrm {e}}^{{\ln \left (\frac {1}{\ln \relax (x)}\right )}^2}\,\ln \left (x-\frac {{\ln \relax (2)}^2}{4}\right )\,{\left (\frac {1}{\ln \relax (x)}\right )}^{2\,\ln \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________