Optimal. Leaf size=30 \[ 2 x+\left (1+2 x^2\right ) \left (3-\frac {e^{e^8}}{-x+x^4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 37, normalized size of antiderivative = 1.23, number of steps used = 6, number of rules used = 5, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.072, Rules used = {1594, 28, 1829, 1586, 14} \begin {gather*} \frac {e^{e^8} (x+2) x}{1-x^3}+6 x^2+2 x+\frac {e^{e^8}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 28
Rule 1586
Rule 1594
Rule 1829
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x^2+12 x^3-4 x^5-24 x^6+2 x^8+12 x^9+e^{e^8} \left (-1+2 x^2+4 x^3+4 x^5\right )}{x^2 \left (1-2 x^3+x^6\right )} \, dx\\ &=\int \frac {2 x^2+12 x^3-4 x^5-24 x^6+2 x^8+12 x^9+e^{e^8} \left (-1+2 x^2+4 x^3+4 x^5\right )}{x^2 \left (-1+x^3\right )^2} \, dx\\ &=\frac {e^{e^8} x (2+x)}{1-x^3}+\frac {1}{3} \int \frac {3 e^{e^8}-6 x^2-3 \left (12+e^{e^8}\right ) x^3+6 x^5+36 x^6}{x^2 \left (-1+x^3\right )} \, dx\\ &=\frac {e^{e^8} x (2+x)}{1-x^3}+\frac {1}{3} \int \frac {-3 e^{e^8}+6 x^2+36 x^3}{x^2} \, dx\\ &=\frac {e^{e^8} x (2+x)}{1-x^3}+\frac {1}{3} \int \left (6-\frac {3 e^{e^8}}{x^2}+36 x\right ) \, dx\\ &=\frac {e^{e^8}}{x}+2 x+6 x^2+\frac {e^{e^8} x (2+x)}{1-x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 40, normalized size = 1.33 \begin {gather*} \frac {e^{e^8}}{x}+2 x+6 x^2+\frac {e^{e^8} \left (-2 x-x^2\right )}{-1+x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 43, normalized size = 1.43 \begin {gather*} \frac {6 \, x^{6} + 2 \, x^{5} - 6 \, x^{3} - 2 \, x^{2} - {\left (2 \, x^{2} + 1\right )} e^{\left (e^{8}\right )}}{x^{4} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 32, normalized size = 1.07 \begin {gather*} 6 \, x^{2} + 2 \, x - \frac {2 \, x^{2} e^{\left (e^{8}\right )} + e^{\left (e^{8}\right )}}{x^{4} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 35, normalized size = 1.17
method | result | size |
risch | \(6 x^{2}+2 x +\frac {-2 \,{\mathrm e}^{{\mathrm e}^{8}} x^{2}-{\mathrm e}^{{\mathrm e}^{8}}}{x \left (x^{3}-1\right )}\) | \(35\) |
default | \(2 x +6 x^{2}-\frac {{\mathrm e}^{{\mathrm e}^{8}}}{x -1}-\frac {{\mathrm e}^{{\mathrm e}^{8}}}{x^{2}+x +1}+\frac {{\mathrm e}^{{\mathrm e}^{8}}}{x}\) | \(40\) |
norman | \(\frac {6 x^{6}+2 x^{5}-6 x^{3}+\left (-2 \,{\mathrm e}^{{\mathrm e}^{8}}-2\right ) x^{2}-{\mathrm e}^{{\mathrm e}^{8}}}{x \left (x^{3}-1\right )}\) | \(48\) |
gosper | \(-\frac {-6 x^{6}-2 x^{5}+2 \,{\mathrm e}^{{\mathrm e}^{8}} x^{2}+6 x^{3}+2 x^{2}+{\mathrm e}^{{\mathrm e}^{8}}}{x \left (x^{3}-1\right )}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 32, normalized size = 1.07 \begin {gather*} 6 \, x^{2} + 2 \, x - \frac {2 \, x^{2} e^{\left (e^{8}\right )} + e^{\left (e^{8}\right )}}{x^{4} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.53, size = 31, normalized size = 1.03 \begin {gather*} 2\,x+6\,x^2+\frac {2\,{\mathrm {e}}^{{\mathrm {e}}^8}\,x^2+{\mathrm {e}}^{{\mathrm {e}}^8}}{x-x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 29, normalized size = 0.97 \begin {gather*} 6 x^{2} + 2 x + \frac {- 2 x^{2} e^{e^{8}} - e^{e^{8}}}{x^{4} - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________