Optimal. Leaf size=15 \[ e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} \]
________________________________________________________________________________________
Rubi [F] time = 2.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{\frac {1}{x^2}} \left (-11 x-x^2+\left (-96+16 x+2 x^2+(-24-2 x) \log (12+x)\right ) \log (-4+x-\log (12+x))\right )}{48 x^3-8 x^4-x^5+\left (12 x^3+x^4\right ) \log (12+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{-1+\frac {1}{x^2}} (x (11+x)-2 (12+x) (-4+x-\log (12+x)) \log (-4+x-\log (12+x)))}{x^3 (12+x)} \, dx\\ &=\int \left (\frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (11+x) (-4+x-\log (12+x))^{-1+\frac {1}{x^2}}}{x^2 (12+x)}-\frac {2 e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{\frac {1}{x^2}} \log (-4+x-\log (12+x))}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{\frac {1}{x^2}} \log (-4+x-\log (12+x))}{x^3} \, dx\right )+\int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (11+x) (-4+x-\log (12+x))^{-1+\frac {1}{x^2}}}{x^2 (12+x)} \, dx\\ &=-\left (2 \int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{\frac {1}{x^2}} \log (-4+x-\log (12+x))}{x^3} \, dx\right )+\int \left (\frac {11 e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{-1+\frac {1}{x^2}}}{12 x^2}+\frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{-1+\frac {1}{x^2}}}{144 x}-\frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{-1+\frac {1}{x^2}}}{144 (12+x)}\right ) \, dx\\ &=\frac {1}{144} \int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{-1+\frac {1}{x^2}}}{x} \, dx-\frac {1}{144} \int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{-1+\frac {1}{x^2}}}{12+x} \, dx+\frac {11}{12} \int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{-1+\frac {1}{x^2}}}{x^2} \, dx-2 \int \frac {e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} (-4+x-\log (12+x))^{\frac {1}{x^2}} \log (-4+x-\log (12+x))}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 15, normalized size = 1.00 \begin {gather*} e^{(-4+x-\log (12+x))^{\frac {1}{x^2}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 14, normalized size = 0.93 \begin {gather*} e^{\left ({\left (x - \log \left (x + 12\right ) - 4\right )}^{\left (\frac {1}{x^{2}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} - 2 \, {\left (x^{2} - {\left (x + 12\right )} \log \left (x + 12\right ) + 8 \, x - 48\right )} \log \left (x - \log \left (x + 12\right ) - 4\right ) + 11 \, x\right )} {\left (x - \log \left (x + 12\right ) - 4\right )}^{\left (\frac {1}{x^{2}}\right )} e^{\left ({\left (x - \log \left (x + 12\right ) - 4\right )}^{\left (\frac {1}{x^{2}}\right )}\right )}}{x^{5} + 8 \, x^{4} - 48 \, x^{3} - {\left (x^{4} + 12 \, x^{3}\right )} \log \left (x + 12\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{\left (-\ln \left (x +12\right )+x -4\right )^{\frac {1}{x^{2}}}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 14, normalized size = 0.93 \begin {gather*} e^{\left ({\left (x - \log \left (x + 12\right ) - 4\right )}^{\left (\frac {1}{x^{2}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.57, size = 14, normalized size = 0.93 \begin {gather*} {\mathrm {e}}^{{\left (x-\ln \left (x+12\right )-4\right )}^{\frac {1}{x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________