Optimal. Leaf size=35 \[ e^{\frac {5}{4} e^{\frac {1}{2} x \left (x-e^{2 e^{\frac {e^5}{x}+x}} x^2\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 9.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{8} \exp \left (\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) \left (10 x+e^{2 e^{\frac {e^5+x^2}{x}}} \left (-15 x^2+e^{\frac {e^5+x^2}{x}} \left (10 e^5 x-10 x^3\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \exp \left (\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) \left (10 x+e^{2 e^{\frac {e^5+x^2}{x}}} \left (-15 x^2+e^{\frac {e^5+x^2}{x}} \left (10 e^5 x-10 x^3\right )\right )\right ) \, dx\\ &=\frac {1}{8} \int \left (10 \exp \left (\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x-5 \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \left (-2 e^{5+\frac {e^5}{x}+x}+3 x+2 e^{\frac {e^5}{x}+x} x^2\right )\right ) \, dx\\ &=-\left (\frac {5}{8} \int \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \left (-2 e^{5+\frac {e^5}{x}+x}+3 x+2 e^{\frac {e^5}{x}+x} x^2\right ) \, dx\right )+\frac {5}{4} \int \exp \left (\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \, dx\\ &=-\left (\frac {5}{8} \int \left (3 \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x^2+2 \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {e^5}{x}+x+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \left (-e^5+x^2\right )\right ) \, dx\right )+\frac {5}{4} \int \exp \left (\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \, dx\\ &=\frac {5}{4} \int \exp \left (\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \, dx-\frac {5}{4} \int \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {e^5}{x}+x+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \left (-e^5+x^2\right ) \, dx-\frac {15}{8} \int \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x^2 \, dx\\ &=\frac {5}{4} \int \exp \left (\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \, dx-\frac {5}{4} \int \left (-\exp \left (5+2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {e^5}{x}+x+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x+\exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {e^5}{x}+x+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x^3\right ) \, dx-\frac {15}{8} \int \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x^2 \, dx\\ &=\frac {5}{4} \int \exp \left (\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \, dx+\frac {5}{4} \int \exp \left (5+2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {e^5}{x}+x+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x \, dx-\frac {5}{4} \int \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {e^5}{x}+x+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x^3 \, dx-\frac {15}{8} \int \exp \left (2 e^{\frac {e^5}{x}+x}+\frac {5}{4} e^{\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )}+\frac {1}{2} \left (x^2-e^{2 e^{\frac {e^5+x^2}{x}}} x^3\right )\right ) x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 34, normalized size = 0.97 \begin {gather*} e^{\frac {5}{4} e^{-\frac {1}{2} x^2 \left (-1+e^{2 e^{\frac {e^5}{x}+x}} x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 29, normalized size = 0.83 \begin {gather*} e^{\left (\frac {5}{4} \, e^{\left (-\frac {1}{2} \, x^{3} e^{\left (2 \, e^{\left (\frac {x^{2} + e^{5}}{x}\right )}\right )} + \frac {1}{2} \, x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5}{8} \, {\left ({\left (3 \, x^{2} + 2 \, {\left (x^{3} - x e^{5}\right )} e^{\left (\frac {x^{2} + e^{5}}{x}\right )}\right )} e^{\left (2 \, e^{\left (\frac {x^{2} + e^{5}}{x}\right )}\right )} - 2 \, x\right )} e^{\left (-\frac {1}{2} \, x^{3} e^{\left (2 \, e^{\left (\frac {x^{2} + e^{5}}{x}\right )}\right )} + \frac {1}{2} \, x^{2} + \frac {5}{4} \, e^{\left (-\frac {1}{2} \, x^{3} e^{\left (2 \, e^{\left (\frac {x^{2} + e^{5}}{x}\right )}\right )} + \frac {1}{2} \, x^{2}\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 28, normalized size = 0.80
method | result | size |
risch | \({\mathrm e}^{\frac {5 \,{\mathrm e}^{-\frac {x^{2} \left (x \,{\mathrm e}^{2 \,{\mathrm e}^{\frac {x^{2}+{\mathrm e}^{5}}{x}}}-1\right )}{2}}}{4}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.85, size = 27, normalized size = 0.77 \begin {gather*} e^{\left (\frac {5}{4} \, e^{\left (-\frac {1}{2} \, x^{3} e^{\left (2 \, e^{\left (x + \frac {e^{5}}{x}\right )}\right )} + \frac {1}{2} \, x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.70, size = 27, normalized size = 0.77 \begin {gather*} {\mathrm {e}}^{\frac {5\,{\mathrm {e}}^{-\frac {x^3\,{\mathrm {e}}^{2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^5}{x}}\,{\mathrm {e}}^x}}{2}}\,{\mathrm {e}}^{\frac {x^2}{2}}}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 39.04, size = 29, normalized size = 0.83 \begin {gather*} e^{\frac {5 e^{- \frac {x^{3} e^{2 e^{\frac {x^{2} + e^{5}}{x}}}}{2} + \frac {x^{2}}{2}}}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________