Optimal. Leaf size=30 \[ e^{e^x+\frac {e^x \left (-5-e^{-x+x^2} x+x^4\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 3.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-e^{x^2} x+e^x \left (-5+x+x^4\right )}{x}} \left (-2 e^{x^2} x^3+e^x \left (5-5 x+x^2+3 x^4+x^5\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-e^{x^2}+\frac {e^x \left (-5+x+x^4\right )}{x}} \left (-2 e^{x^2} x^3+e^x \left (5-5 x+x^2+3 x^4+x^5\right )\right )}{x^2} \, dx\\ &=\int \left (-2 e^{-e^{x^2}+x^2+\frac {e^x \left (-5+x+x^4\right )}{x}} x+\frac {e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}} \left (5-5 x+x^2+3 x^4+x^5\right )}{x^2}\right ) \, dx\\ &=-\left (2 \int e^{-e^{x^2}+x^2+\frac {e^x \left (-5+x+x^4\right )}{x}} x \, dx\right )+\int \frac {e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}} \left (5-5 x+x^2+3 x^4+x^5\right )}{x^2} \, dx\\ &=-\left (2 \int e^{-e^{x^2}+x^2+\frac {e^x \left (-5+x+x^4\right )}{x}} x \, dx\right )+\int \left (e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}}+\frac {5 e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}}}{x^2}-\frac {5 e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}}}{x}+3 e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}} x^2+e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}} x^3\right ) \, dx\\ &=-\left (2 \int e^{-e^{x^2}+x^2+\frac {e^x \left (-5+x+x^4\right )}{x}} x \, dx\right )+3 \int e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}} x^2 \, dx+5 \int \frac {e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}}}{x^2} \, dx-5 \int \frac {e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}}}{x} \, dx+\int e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}} \, dx+\int e^{-e^{x^2}+x+\frac {e^x \left (-5+x+x^4\right )}{x}} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.09, size = 23, normalized size = 0.77 \begin {gather*} e^{-e^{x^2}+\frac {e^x \left (-5+x+x^4\right )}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 23, normalized size = 0.77 \begin {gather*} e^{\left (-\frac {x e^{\left (x^{2}\right )} - {\left (x^{4} + x - 5\right )} e^{x}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 23, normalized size = 0.77 \begin {gather*} e^{\left (x^{3} e^{x} - \frac {5 \, e^{x}}{x} - e^{\left (x^{2}\right )} + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 0.93
method | result | size |
risch | \({\mathrm e}^{\frac {-{\mathrm e}^{x^{2}} x +{\mathrm e}^{x} x^{4}+{\mathrm e}^{x} x -5 \,{\mathrm e}^{x}}{x}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 23, normalized size = 0.77 \begin {gather*} e^{\left (x^{3} e^{x} - \frac {5 \, e^{x}}{x} - e^{\left (x^{2}\right )} + e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.39, size = 26, normalized size = 0.87 \begin {gather*} {\mathrm {e}}^{-{\mathrm {e}}^{x^2}}\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{x^3\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-\frac {5\,{\mathrm {e}}^x}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 24, normalized size = 0.80 \begin {gather*} e^{\frac {- x e^{x} e^{x^{2} - x} + \left (x^{4} + x - 5\right ) e^{x}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________