Optimal. Leaf size=36 \[ \frac {e^{-4+x}}{e^3-\log ^2(3) \left (i \pi +\log \left (3-\log \left (\frac {2}{\log (4)}\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 30, normalized size of antiderivative = 0.83, number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {12, 2194} \begin {gather*} \frac {e^{x-4}}{e^3-\log ^2(3) (\log (3+\log (\log (2)))+i \pi )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-4+x} \, dx}{e^3-\log ^2(3) (i \pi +\log (3+\log (\log (2))))}\\ &=\frac {e^{-4+x}}{e^3-\log ^2(3) (i \pi +\log (3+\log (\log (2))))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 31, normalized size = 0.86 \begin {gather*} \frac {e^{-4+x}}{e^3+\log ^2(3) (-i \pi -\log (3+\log (\log (2))))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 26, normalized size = 0.72 \begin {gather*} -\frac {e^{\left (x - 4\right )}}{\log \relax (3)^{2} \log \left (-\log \left (\log \relax (2)\right ) - 3\right ) - e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 26, normalized size = 0.72 \begin {gather*} -\frac {e^{\left (x - 4\right )}}{\log \relax (3)^{2} \log \left (-\log \left (\log \relax (2)\right ) - 3\right ) - e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 0.69
method | result | size |
gosper | \(\frac {{\mathrm e}^{x -4}}{{\mathrm e}^{3}-\ln \relax (3)^{2} \ln \left (-\ln \left (\ln \relax (2)\right )-3\right )}\) | \(25\) |
norman | \(\frac {{\mathrm e}^{x -4}}{{\mathrm e}^{3}-\ln \relax (3)^{2} \ln \left (-\ln \left (\ln \relax (2)\right )-3\right )}\) | \(25\) |
derivativedivides | \(-\frac {{\mathrm e}^{x -4}}{\ln \relax (3)^{2} \ln \left (-\ln \left (\ln \relax (2)\right )-3\right )-{\mathrm e}^{3}}\) | \(27\) |
default | \(-\frac {{\mathrm e}^{x -4}}{\ln \relax (3)^{2} \ln \left (-\ln \left (\ln \relax (2)\right )-3\right )-{\mathrm e}^{3}}\) | \(27\) |
risch | \(-\frac {{\mathrm e}^{x -4}}{\ln \relax (3)^{2} \ln \left (-\ln \left (\ln \relax (2)\right )-3\right )-{\mathrm e}^{3}}\) | \(27\) |
meijerg | \(\frac {{\mathrm e}^{-4} \left (1-{\mathrm e}^{x}\right )}{\ln \relax (3)^{2} \ln \left (-\ln \left (\ln \relax (2)\right )-3\right )-{\mathrm e}^{3}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 26, normalized size = 0.72 \begin {gather*} -\frac {e^{\left (x - 4\right )}}{\log \relax (3)^{2} \log \left (-\log \left (\log \relax (2)\right ) - 3\right ) - e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 24, normalized size = 0.67 \begin {gather*} \frac {{\mathrm {e}}^{-4}\,{\mathrm {e}}^x}{{\mathrm {e}}^3-\ln \left (-\ln \left (\ln \relax (2)\right )-3\right )\,{\ln \relax (3)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 36, normalized size = 1.00 \begin {gather*} - \frac {e^{x}}{- e^{7} + e^{4} \log {\relax (3 )}^{2} \log {\left (\log {\left (\log {\relax (2 )} \right )} + 3 \right )} + i \pi e^{4} \log {\relax (3 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________