Optimal. Leaf size=26 \[ e^{5+\frac {1}{25} (x+\log (2 (-2 x+(-5+x) x)))}+\log (\log (5)) \]
________________________________________________________________________________________
Rubi [F] time = 2.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{25} \left (125+x+\log \left (-14 x+2 x^2\right )\right )} \left (-7-5 x+x^2\right )}{-175 x+25 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{25} \left (125+x+\log \left (-14 x+2 x^2\right )\right )} \left (-7-5 x+x^2\right )}{x (-175+25 x)} \, dx\\ &=\int \frac {e^{\frac {125+x}{25}} \left (-7-5 x+x^2\right ) \sqrt [25]{-14 x+2 x^2}}{x (-175+25 x)} \, dx\\ &=\frac {\sqrt [25]{-14 x+2 x^2} \int \frac {e^{\frac {125+x}{25}} \sqrt [25]{-14+2 x} \left (-7-5 x+x^2\right )}{x^{24/25} (-175+25 x)} \, dx}{\sqrt [25]{x} \sqrt [25]{-14+2 x}}\\ &=\frac {\left (2 \sqrt [25]{-14 x+2 x^2}\right ) \int \frac {e^{\frac {125+x}{25}} \left (-7-5 x+x^2\right )}{x^{24/25} (-14+2 x)^{24/25}} \, dx}{25 \sqrt [25]{x} \sqrt [25]{-14+2 x}}\\ &=\frac {\left (2 \sqrt [25]{-14 x+2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{\frac {1}{25} \left (125+x^{25}\right )} \left (-7-5 x^{25}+x^{50}\right )}{\left (-14+2 x^{25}\right )^{24/25}} \, dx,x,\sqrt [25]{x}\right )}{\sqrt [25]{x} \sqrt [25]{-14+2 x}}\\ &=\frac {\left (2 \sqrt [25]{-14 x+2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{5+\frac {x^{25}}{25}} \left (-7-5 x^{25}+x^{50}\right )}{\left (-14+2 x^{25}\right )^{24/25}} \, dx,x,\sqrt [25]{x}\right )}{\sqrt [25]{x} \sqrt [25]{-14+2 x}}\\ &=\frac {\left (2 \sqrt [25]{-14 x+2 x^2}\right ) \operatorname {Subst}\left (\int \left (-\frac {7 e^{5+\frac {x^{25}}{25}}}{\left (-14+2 x^{25}\right )^{24/25}}-\frac {5 e^{5+\frac {x^{25}}{25}} x^{25}}{\left (-14+2 x^{25}\right )^{24/25}}+\frac {e^{5+\frac {x^{25}}{25}} x^{50}}{\left (-14+2 x^{25}\right )^{24/25}}\right ) \, dx,x,\sqrt [25]{x}\right )}{\sqrt [25]{x} \sqrt [25]{-14+2 x}}\\ &=\frac {\left (2 \sqrt [25]{-14 x+2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{5+\frac {x^{25}}{25}} x^{50}}{\left (-14+2 x^{25}\right )^{24/25}} \, dx,x,\sqrt [25]{x}\right )}{\sqrt [25]{x} \sqrt [25]{-14+2 x}}-\frac {\left (10 \sqrt [25]{-14 x+2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{5+\frac {x^{25}}{25}} x^{25}}{\left (-14+2 x^{25}\right )^{24/25}} \, dx,x,\sqrt [25]{x}\right )}{\sqrt [25]{x} \sqrt [25]{-14+2 x}}-\frac {\left (14 \sqrt [25]{-14 x+2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{5+\frac {x^{25}}{25}}}{\left (-14+2 x^{25}\right )^{24/25}} \, dx,x,\sqrt [25]{x}\right )}{\sqrt [25]{x} \sqrt [25]{-14+2 x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.27, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {1}{25} \left (125+x+\log \left (-14 x+2 x^2\right )\right )} \left (-7-5 x+x^2\right )}{-175 x+25 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 18, normalized size = 0.69 \begin {gather*} e^{\left (\frac {1}{25} \, x + \frac {1}{25} \, \log \left (2 \, x^{2} - 14 \, x\right ) + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 18, normalized size = 0.69 \begin {gather*} e^{\left (\frac {1}{25} \, x + \frac {1}{25} \, \log \left (2 \, x^{2} - 14 \, x\right ) + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 19, normalized size = 0.73
method | result | size |
gosper | \({\mathrm e}^{\frac {\ln \left (2 x^{2}-14 x \right )}{25}+\frac {x}{25}+5}\) | \(19\) |
norman | \({\mathrm e}^{\frac {\ln \left (2 x^{2}-14 x \right )}{25}+\frac {x}{25}+5}\) | \(19\) |
risch | \(\left (2 x^{2}-14 x \right )^{\frac {1}{25}} {\mathrm e}^{5+\frac {x}{25}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{25} \, \int \frac {{\left (x^{2} - 5 \, x - 7\right )} e^{\left (\frac {1}{25} \, x + \frac {1}{25} \, \log \left (2 \, x^{2} - 14 \, x\right ) + 5\right )}}{x^{2} - 7 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.22, size = 19, normalized size = 0.73 \begin {gather*} 2^{1/25}\,{\mathrm {e}}^{x/25}\,{\mathrm {e}}^5\,{\left (x^2-7\,x\right )}^{1/25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________