Optimal. Leaf size=24 \[ \frac {(4+x)^2}{x^2 \left (3+\left (-\log \left (\frac {1}{x}\right )+\log (x)\right )^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-96-24 x+\left (64+32 x+4 x^2\right ) \log \left (\frac {1}{x}\right )+(-32-8 x) \log ^2\left (\frac {1}{x}\right )+\left (-64-32 x-4 x^2+(64+16 x) \log \left (\frac {1}{x}\right )\right ) \log (x)+(-32-8 x) \log ^2(x)}{9 x^3+6 x^3 \log ^2\left (\frac {1}{x}\right )+x^3 \log ^4\left (\frac {1}{x}\right )+\left (-12 x^3 \log \left (\frac {1}{x}\right )-4 x^3 \log ^3\left (\frac {1}{x}\right )\right ) \log (x)+\left (6 x^3+6 x^3 \log ^2\left (\frac {1}{x}\right )\right ) \log ^2(x)-4 x^3 \log \left (\frac {1}{x}\right ) \log ^3(x)+x^3 \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 (4+x) \left (-6-2 \log ^2\left (\frac {1}{x}\right )-(4+x) \log (x)-2 \log ^2(x)+\log \left (\frac {1}{x}\right ) (4+x+4 \log (x))\right )}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx\\ &=4 \int \frac {(4+x) \left (-6-2 \log ^2\left (\frac {1}{x}\right )-(4+x) \log (x)-2 \log ^2(x)+\log \left (\frac {1}{x}\right ) (4+x+4 \log (x))\right )}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx\\ &=4 \int \left (\frac {(4+x)^2 \left (\log \left (\frac {1}{x}\right )-\log (x)\right )}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}-\frac {2 (4+x)}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )}\right ) \, dx\\ &=4 \int \frac {(4+x)^2 \left (\log \left (\frac {1}{x}\right )-\log (x)\right )}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx-8 \int \frac {4+x}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )} \, dx\\ &=4 \int \left (\frac {16 \left (\log \left (\frac {1}{x}\right )-\log (x)\right )}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}+\frac {8 \left (\log \left (\frac {1}{x}\right )-\log (x)\right )}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}+\frac {\log \left (\frac {1}{x}\right )-\log (x)}{x \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}\right ) \, dx-8 \int \left (\frac {4}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )}+\frac {1}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )}\right ) \, dx\\ &=4 \int \frac {\log \left (\frac {1}{x}\right )-\log (x)}{x \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx-8 \int \frac {1}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )} \, dx+32 \int \frac {\log \left (\frac {1}{x}\right )-\log (x)}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx-32 \int \frac {1}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )} \, dx+64 \int \frac {\log \left (\frac {1}{x}\right )-\log (x)}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx\\ &=4 \int \left (\frac {\log \left (\frac {1}{x}\right )}{x \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}-\frac {\log (x)}{x \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}\right ) \, dx-8 \int \frac {1}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )} \, dx-32 \int \frac {1}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )} \, dx+32 \int \left (\frac {\log \left (\frac {1}{x}\right )}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}-\frac {\log (x)}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}\right ) \, dx+64 \int \left (\frac {\log \left (\frac {1}{x}\right )}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}-\frac {\log (x)}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2}\right ) \, dx\\ &=4 \int \frac {\log \left (\frac {1}{x}\right )}{x \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx-4 \int \frac {\log (x)}{x \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx-8 \int \frac {1}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )} \, dx+32 \int \frac {\log \left (\frac {1}{x}\right )}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx-32 \int \frac {\log (x)}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx-32 \int \frac {1}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )} \, dx+64 \int \frac {\log \left (\frac {1}{x}\right )}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx-64 \int \frac {\log (x)}{x^3 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 31, normalized size = 1.29 \begin {gather*} \frac {(4+x)^2}{x^2 \left (3+\log ^2\left (\frac {1}{x}\right )-2 \log \left (\frac {1}{x}\right ) \log (x)+\log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 28, normalized size = 1.17 \begin {gather*} \frac {x^{2} + 8 \, x + 16}{4 \, x^{2} \log \left (\frac {1}{x}\right )^{2} + 3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 26, normalized size = 1.08 \begin {gather*} \frac {x^{2} + 8 \, x + 16}{4 \, x^{2} \log \relax (x)^{2} + 3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 23, normalized size = 0.96
method | result | size |
risch | \(\frac {x^{2}+8 x +16}{x^{2} \left (4 \ln \relax (x )^{2}+3\right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 26, normalized size = 1.08 \begin {gather*} \frac {x^{2} + 8 \, x + 16}{4 \, x^{2} \log \relax (x)^{2} + 3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.60, size = 46, normalized size = 1.92 \begin {gather*} \frac {x^2+8\,x+16}{x^2\,{\ln \left (\frac {1}{x}\right )}^2-2\,x^2\,\ln \left (\frac {1}{x}\right )\,\ln \relax (x)+x^2\,{\ln \relax (x)}^2+3\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 22, normalized size = 0.92 \begin {gather*} \frac {x^{2} + 8 x + 16}{4 x^{2} \log {\relax (x )}^{2} + 3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________