Optimal. Leaf size=20 \[ \frac {2 \left (3+e^x+\log ^2\left (16 e^{2 x}\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 29, normalized size of antiderivative = 1.45, number of steps used = 10, number of rules used = 5, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {14, 2197, 2158, 29, 2168} \begin {gather*} \frac {2 e^x}{x}+\frac {6}{x}+\frac {2 \log ^2\left (16 e^{2 x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 2158
Rule 2168
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^x (-1+x)}{x^2}+\frac {2 \left (-3+4 x \log \left (16 e^{2 x}\right )-\log ^2\left (16 e^{2 x}\right )\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {e^x (-1+x)}{x^2} \, dx+2 \int \frac {-3+4 x \log \left (16 e^{2 x}\right )-\log ^2\left (16 e^{2 x}\right )}{x^2} \, dx\\ &=\frac {2 e^x}{x}+2 \int \left (-\frac {3}{x^2}+\frac {4 \log \left (16 e^{2 x}\right )}{x}-\frac {\log ^2\left (16 e^{2 x}\right )}{x^2}\right ) \, dx\\ &=\frac {6}{x}+\frac {2 e^x}{x}-2 \int \frac {\log ^2\left (16 e^{2 x}\right )}{x^2} \, dx+8 \int \frac {\log \left (16 e^{2 x}\right )}{x} \, dx\\ &=\frac {6}{x}+\frac {2 e^x}{x}+16 x+\frac {2 \log ^2\left (16 e^{2 x}\right )}{x}-8 \int \frac {\log \left (16 e^{2 x}\right )}{x} \, dx-\left (8 \left (2 x-\log \left (16 e^{2 x}\right )\right )\right ) \int \frac {1}{x} \, dx\\ &=\frac {6}{x}+\frac {2 e^x}{x}+\frac {2 \log ^2\left (16 e^{2 x}\right )}{x}-8 \left (2 x-\log \left (16 e^{2 x}\right )\right ) \log (x)+\left (8 \left (2 x-\log \left (16 e^{2 x}\right )\right )\right ) \int \frac {1}{x} \, dx\\ &=\frac {6}{x}+\frac {2 e^x}{x}+\frac {2 \log ^2\left (16 e^{2 x}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 29, normalized size = 1.45 \begin {gather*} \frac {2 \left (3+e^x+4 x^2+\left (-2 x+\log \left (16 e^{2 x}\right )\right )^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 20, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (4 \, x^{2} + 16 \, \log \relax (2)^{2} + e^{x} + 3\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (4 \, x^{2} + 16 \, \log \relax (2)^{2} + e^{x} + 3\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 22, normalized size = 1.10
method | result | size |
norman | \(\frac {6+2 \ln \left (16 \,{\mathrm e}^{2 x}\right )^{2}+2 \,{\mathrm e}^{x}}{x}\) | \(22\) |
default | \(\frac {6}{x}+\frac {2 \ln \left (16 \,{\mathrm e}^{2 x}\right )^{2}}{x}+\frac {2 \,{\mathrm e}^{x}}{x}\) | \(28\) |
risch | \(\frac {8 \ln \left ({\mathrm e}^{x}\right )^{2}}{x}+\frac {4 \left (-i \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+2 i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}-i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}+8 \ln \relax (2)\right ) \ln \left ({\mathrm e}^{x}\right )}{x}+\frac {12+64 \ln \relax (2)^{2}+4 \,{\mathrm e}^{x}-16 i \ln \relax (2) \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-\pi ^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{4} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{3} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-6 \pi ^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{4}+4 \pi ^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{6}-16 i \ln \relax (2) \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+32 i \ln \relax (2) \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}}{2 x}\) | \(261\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 31, normalized size = 1.55 \begin {gather*} \frac {2 \, \log \left (16 \, e^{\left (2 \, x\right )}\right )^{2}}{x} + \frac {6}{x} + 2 \, {\rm Ei}\relax (x) - 2 \, \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 20, normalized size = 1.00 \begin {gather*} 8\,x+\frac {2\,{\mathrm {e}}^x+32\,{\ln \relax (2)}^2+6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.95 \begin {gather*} 8 x + \frac {2 e^{x}}{x} + \frac {6 + 32 \log {\relax (2 )}^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________