Optimal. Leaf size=21 \[ \frac {3 x}{x+\frac {x^2}{\log \left (\frac {1}{125}-x\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 18, normalized size of antiderivative = 0.86, number of steps used = 3, number of rules used = 3, integrand size = 72, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6688, 6711, 32} \begin {gather*} \frac {3}{\frac {x}{\log \left (\frac {1}{125}-x\right )}+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-375 x-(3-375 x) \log \left (\frac {1}{125}-x\right )}{(1-125 x) \left (x+\log \left (\frac {1}{125}-x\right )\right )^2} \, dx\\ &=-\left (3 \operatorname {Subst}\left (\int \frac {1}{(1+x)^2} \, dx,x,\frac {x}{\log \left (\frac {1}{125}-x\right )}\right )\right )\\ &=\frac {3}{1+\frac {x}{\log \left (\frac {1}{125}-x\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 15, normalized size = 0.71 \begin {gather*} -\frac {3 x}{x+\log \left (\frac {1}{125}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 13, normalized size = 0.62 \begin {gather*} -\frac {3 \, x}{x + \log \left (-x + \frac {1}{125}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.74, size = 13, normalized size = 0.62 \begin {gather*} -\frac {3 \, x}{x + \log \left (-x + \frac {1}{125}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 14, normalized size = 0.67
method | result | size |
risch | \(-\frac {3 x}{\ln \left (-x +\frac {1}{125}\right )+x}\) | \(14\) |
norman | \(\frac {3 \ln \left (-x +\frac {1}{125}\right )}{\ln \left (-x +\frac {1}{125}\right )+x}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 17, normalized size = 0.81 \begin {gather*} -\frac {3 \, x}{x - 3 \, \log \relax (5) + \log \left (-125 \, x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 13, normalized size = 0.62 \begin {gather*} -\frac {3\,x}{x+\ln \left (\frac {1}{125}-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 12, normalized size = 0.57 \begin {gather*} - \frac {3 x}{x + \log {\left (\frac {1}{125} - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________