Optimal. Leaf size=22 \[ 5-x-\frac {\log (x) \log \left (1-\frac {4 x}{3}+\log (x)\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x^2+4 x^3+\left (-3+4 x-3 x^2\right ) \log (x)+\left (-3+4 x-4 x \log (x)+3 \log ^2(x)\right ) \log \left (\frac {1}{3} (3-4 x+3 \log (x))\right )}{3 x^2-4 x^3+3 x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3 x^2-4 x^3+3 \log (x)-4 x \log (x)+3 x^2 \log (x)}{x^2 (-3+4 x-3 \log (x))}+\frac {(-1+\log (x)) \log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2}\right ) \, dx\\ &=\int \frac {3 x^2-4 x^3+3 \log (x)-4 x \log (x)+3 x^2 \log (x)}{x^2 (-3+4 x-3 \log (x))} \, dx+\int \frac {(-1+\log (x)) \log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2} \, dx\\ &=\int \left (\frac {-3+4 x-3 x^2}{3 x^2}-\frac {(-3+4 x)^2}{3 x^2 (-3+4 x-3 \log (x))}\right ) \, dx+\int \left (-\frac {\log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2}+\frac {\log (x) \log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {-3+4 x-3 x^2}{x^2} \, dx-\frac {1}{3} \int \frac {(-3+4 x)^2}{x^2 (-3+4 x-3 \log (x))} \, dx-\int \frac {\log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2} \, dx+\int \frac {\log (x) \log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2} \, dx\\ &=\frac {1}{3} \int \left (-3-\frac {3}{x^2}+\frac {4}{x}\right ) \, dx-\frac {1}{3} \int \left (\frac {16}{-3+4 x-3 \log (x)}+\frac {9}{x^2 (-3+4 x-3 \log (x))}-\frac {24}{x (-3+4 x-3 \log (x))}\right ) \, dx-\int \frac {\log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2} \, dx+\int \frac {\log (x) \log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2} \, dx\\ &=\frac {1}{x}-x+\frac {4 \log (x)}{3}-3 \int \frac {1}{x^2 (-3+4 x-3 \log (x))} \, dx-\frac {16}{3} \int \frac {1}{-3+4 x-3 \log (x)} \, dx+8 \int \frac {1}{x (-3+4 x-3 \log (x))} \, dx-\int \frac {\log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2} \, dx+\int \frac {\log (x) \log \left (1-\frac {4 x}{3}+\log (x)\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 21, normalized size = 0.95 \begin {gather*} -x-\frac {\log (x) \log \left (1-\frac {4 x}{3}+\log (x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 20, normalized size = 0.91 \begin {gather*} -\frac {x^{2} + \log \relax (x) \log \left (-\frac {4}{3} \, x + \log \relax (x) + 1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 29, normalized size = 1.32 \begin {gather*} -x + \frac {\log \relax (3) \log \relax (x)}{x} - \frac {\log \relax (x) \log \left (-4 \, x + 3 \, \log \relax (x) + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 20, normalized size = 0.91
method | result | size |
risch | \(-\frac {\ln \relax (x ) \ln \left (\ln \relax (x )+1-\frac {4 x}{3}\right )}{x}-x\) | \(20\) |
norman | \(\frac {-x^{2}-\ln \relax (x ) \ln \left (\ln \relax (x )+1-\frac {4 x}{3}\right )}{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 28, normalized size = 1.27 \begin {gather*} -\frac {x^{2} - \log \relax (3) \log \relax (x) + \log \relax (x) \log \left (-4 \, x + 3 \, \log \relax (x) + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.48, size = 19, normalized size = 0.86 \begin {gather*} -x-\frac {\ln \left (\ln \relax (x)-\frac {4\,x}{3}+1\right )\,\ln \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 19, normalized size = 0.86 \begin {gather*} - x - \frac {\log {\relax (x )} \log {\left (- \frac {4 x}{3} + \log {\relax (x )} + 1 \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________