3.7.14 \(\int \frac {-30 e^3 x+e^6 x^4+(-15+2 e^3 x^3) \log (\log (2))+x^2 \log ^2(\log (2))}{e^6 x^4+2 e^3 x^3 \log (\log (2))+x^2 \log ^2(\log (2))} \, dx\)

Optimal. Leaf size=24 \[ x-\frac {15 \left (2 x-\frac {1}{e^3 x+\log (\log (2))}\right )}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 33, normalized size of antiderivative = 1.38, number of steps used = 4, number of rules used = 3, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {1594, 27, 1620} \begin {gather*} x-\frac {15 e^3}{\log (\log (2)) \left (e^3 x+\log (\log (2))\right )}+\frac {15}{x \log (\log (2))} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-30*E^3*x + E^6*x^4 + (-15 + 2*E^3*x^3)*Log[Log[2]] + x^2*Log[Log[2]]^2)/(E^6*x^4 + 2*E^3*x^3*Log[Log[2]]
 + x^2*Log[Log[2]]^2),x]

[Out]

x + 15/(x*Log[Log[2]]) - (15*E^3)/(Log[Log[2]]*(E^3*x + Log[Log[2]]))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 1620

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-30 e^3 x+e^6 x^4+\left (-15+2 e^3 x^3\right ) \log (\log (2))+x^2 \log ^2(\log (2))}{x^2 \left (e^6 x^2+2 e^3 x \log (\log (2))+\log ^2(\log (2))\right )} \, dx\\ &=\int \frac {-30 e^3 x+e^6 x^4+\left (-15+2 e^3 x^3\right ) \log (\log (2))+x^2 \log ^2(\log (2))}{x^2 \left (e^3 x+\log (\log (2))\right )^2} \, dx\\ &=\int \left (1-\frac {15}{x^2 \log (\log (2))}+\frac {15 e^6}{\log (\log (2)) \left (e^3 x+\log (\log (2))\right )^2}\right ) \, dx\\ &=x+\frac {15}{x \log (\log (2))}-\frac {15 e^3}{\log (\log (2)) \left (e^3 x+\log (\log (2))\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 33, normalized size = 1.38 \begin {gather*} x+\frac {15}{x \log (\log (2))}-\frac {15 e^3}{\log (\log (2)) \left (e^3 x+\log (\log (2))\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-30*E^3*x + E^6*x^4 + (-15 + 2*E^3*x^3)*Log[Log[2]] + x^2*Log[Log[2]]^2)/(E^6*x^4 + 2*E^3*x^3*Log[L
og[2]] + x^2*Log[Log[2]]^2),x]

[Out]

x + 15/(x*Log[Log[2]]) - (15*E^3)/(Log[Log[2]]*(E^3*x + Log[Log[2]]))

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 30, normalized size = 1.25 \begin {gather*} \frac {x^{3} e^{3} + x^{2} \log \left (\log \relax (2)\right ) + 15}{x^{2} e^{3} + x \log \left (\log \relax (2)\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(log(2))^2+(2*x^3*exp(3)-15)*log(log(2))+x^4*exp(3)^2-30*x*exp(3))/(x^2*log(log(2))^2+2*x^3*
exp(3)*log(log(2))+x^4*exp(3)^2),x, algorithm="fricas")

[Out]

(x^3*e^3 + x^2*log(log(2)) + 15)/(x^2*e^3 + x*log(log(2)))

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(log(2))^2+(2*x^3*exp(3)-15)*log(log(2))+x^4*exp(3)^2-30*x*exp(3))/(x^2*log(log(2))^2+2*x^3*
exp(3)*log(log(2))+x^4*exp(3)^2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: sageVARx*exp(6)/exp(6)+15/ln(ln(2))/sage
VARx-30*exp(6)*1/2/ln(ln(2))/sqrt(-exp(3)^2+exp(6))/ln(ln(2))*atan((-sageVARx*exp(6)-exp(3)*ln(ln(2)))/sqrt(-e
xp(3)^2+exp(6))/ln(ln

________________________________________________________________________________________

maple [A]  time = 0.09, size = 18, normalized size = 0.75




method result size



risch \(x +\frac {15}{x \left (x \,{\mathrm e}^{3}+\ln \left (\ln \relax (2)\right )\right )}\) \(18\)
norman \(\frac {15+x^{3} {\mathrm e}^{3}+x^{2} \ln \left (\ln \relax (2)\right )}{x \left (x \,{\mathrm e}^{3}+\ln \left (\ln \relax (2)\right )\right )}\) \(30\)
gosper \(\frac {\left (x^{3} {\mathrm e}^{6}-x \ln \left (\ln \relax (2)\right )^{2}+15 \,{\mathrm e}^{3}\right ) {\mathrm e}^{-3}}{x \left (x \,{\mathrm e}^{3}+\ln \left (\ln \relax (2)\right )\right )}\) \(40\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*ln(ln(2))^2+(2*x^3*exp(3)-15)*ln(ln(2))+x^4*exp(3)^2-30*x*exp(3))/(x^2*ln(ln(2))^2+2*x^3*exp(3)*ln(ln
(2))+x^4*exp(3)^2),x,method=_RETURNVERBOSE)

[Out]

x+15/x/(x*exp(3)+ln(ln(2)))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 18, normalized size = 0.75 \begin {gather*} x + \frac {15}{x^{2} e^{3} + x \log \left (\log \relax (2)\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(log(2))^2+(2*x^3*exp(3)-15)*log(log(2))+x^4*exp(3)^2-30*x*exp(3))/(x^2*log(log(2))^2+2*x^3*
exp(3)*log(log(2))+x^4*exp(3)^2),x, algorithm="maxima")

[Out]

x + 15/(x^2*e^3 + x*log(log(2)))

________________________________________________________________________________________

mupad [B]  time = 0.57, size = 17, normalized size = 0.71 \begin {gather*} x+\frac {15}{x\,\left (\ln \left (\ln \relax (2)\right )+x\,{\mathrm {e}}^3\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(log(2))*(2*x^3*exp(3) - 15) - 30*x*exp(3) + x^2*log(log(2))^2 + x^4*exp(6))/(x^2*log(log(2))^2 + x^4*
exp(6) + 2*x^3*exp(3)*log(log(2))),x)

[Out]

x + 15/(x*(log(log(2)) + x*exp(3)))

________________________________________________________________________________________

sympy [A]  time = 0.22, size = 15, normalized size = 0.62 \begin {gather*} x + \frac {15}{x^{2} e^{3} + x \log {\left (\log {\relax (2 )} \right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2*ln(ln(2))**2+(2*x**3*exp(3)-15)*ln(ln(2))+x**4*exp(3)**2-30*x*exp(3))/(x**2*ln(ln(2))**2+2*x**
3*exp(3)*ln(ln(2))+x**4*exp(3)**2),x)

[Out]

x + 15/(x**2*exp(3) + x*log(log(2)))

________________________________________________________________________________________