Optimal. Leaf size=22 \[ 6-\frac {3 e^{-\frac {x}{-\frac {1}{5}+x}}}{x}-x \]
________________________________________________________________________________________
Rubi [A] time = 1.36, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 27, number of rules used = 11, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {1594, 27, 6688, 6742, 2232, 2231, 2230, 2210, 2233, 2178, 2209} \begin {gather*} -x-\frac {3 e^{\frac {5 x}{1-5 x}}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2178
Rule 2209
Rule 2210
Rule 2230
Rule 2231
Rule 2232
Rule 2233
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {5 x}{-1+5 x}} \left (3-45 x+75 x^2+e^{\frac {5 x}{-1+5 x}} \left (-x^2+10 x^3-25 x^4\right )\right )}{x^2 \left (1-10 x+25 x^2\right )} \, dx\\ &=\int \frac {e^{-\frac {5 x}{-1+5 x}} \left (3-45 x+75 x^2+e^{\frac {5 x}{-1+5 x}} \left (-x^2+10 x^3-25 x^4\right )\right )}{x^2 (-1+5 x)^2} \, dx\\ &=\int \left (-1+\frac {e^{\frac {5 x}{1-5 x}} \left (3-45 x+75 x^2\right )}{(1-5 x)^2 x^2}\right ) \, dx\\ &=-x+\int \frac {e^{\frac {5 x}{1-5 x}} \left (3-45 x+75 x^2\right )}{(1-5 x)^2 x^2} \, dx\\ &=-x+\int \left (\frac {3 e^{\frac {5 x}{1-5 x}}}{x^2}-\frac {15 e^{\frac {5 x}{1-5 x}}}{x}-\frac {75 e^{\frac {5 x}{1-5 x}}}{(-1+5 x)^2}+\frac {75 e^{\frac {5 x}{1-5 x}}}{-1+5 x}\right ) \, dx\\ &=-x+3 \int \frac {e^{\frac {5 x}{1-5 x}}}{x^2} \, dx-15 \int \frac {e^{\frac {5 x}{1-5 x}}}{x} \, dx-75 \int \frac {e^{\frac {5 x}{1-5 x}}}{(-1+5 x)^2} \, dx+75 \int \frac {e^{\frac {5 x}{1-5 x}}}{-1+5 x} \, dx\\ &=-\frac {3 e^{\frac {5 x}{1-5 x}}}{x}-x+15 \int \frac {e^{\frac {5 x}{1-5 x}}}{(1-5 x)^2 x} \, dx-15 \int \frac {e^{\frac {5 x}{1-5 x}}}{(1-5 x) x} \, dx+75 \int \frac {e^{\frac {5 x}{1-5 x}}}{1-5 x} \, dx-75 \int \frac {e^{-1+\frac {1}{1-5 x}}}{(-1+5 x)^2} \, dx+75 \int \frac {e^{-1+\frac {1}{1-5 x}}}{-1+5 x} \, dx\\ &=-15 e^{-1+\frac {1}{1-5 x}}-\frac {3 e^{\frac {5 x}{1-5 x}}}{x}-x-\frac {15 \text {Ei}\left (\frac {1}{1-5 x}\right )}{e}+15 \int \left (\frac {e^{\frac {5 x}{1-5 x}}}{x}+\frac {5 e^{\frac {5 x}{1-5 x}}}{(-1+5 x)^2}-\frac {5 e^{\frac {5 x}{1-5 x}}}{-1+5 x}\right ) \, dx-15 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\frac {x}{1-5 x}\right )+75 \int \frac {e^{-1+\frac {1}{1-5 x}}}{1-5 x} \, dx\\ &=-15 e^{-1+\frac {1}{1-5 x}}-\frac {3 e^{\frac {5 x}{1-5 x}}}{x}-x-15 \text {Ei}\left (\frac {5 x}{1-5 x}\right )+15 \int \frac {e^{\frac {5 x}{1-5 x}}}{x} \, dx+75 \int \frac {e^{\frac {5 x}{1-5 x}}}{(-1+5 x)^2} \, dx-75 \int \frac {e^{\frac {5 x}{1-5 x}}}{-1+5 x} \, dx\\ &=-15 e^{-1+\frac {1}{1-5 x}}-\frac {3 e^{\frac {5 x}{1-5 x}}}{x}-x-15 \text {Ei}\left (\frac {5 x}{1-5 x}\right )+15 \int \frac {e^{\frac {5 x}{1-5 x}}}{(1-5 x) x} \, dx-75 \int \frac {e^{\frac {5 x}{1-5 x}}}{1-5 x} \, dx+75 \int \frac {e^{-1+\frac {1}{1-5 x}}}{(-1+5 x)^2} \, dx-75 \int \frac {e^{-1+\frac {1}{1-5 x}}}{-1+5 x} \, dx\\ &=-\frac {3 e^{\frac {5 x}{1-5 x}}}{x}-x+\frac {15 \text {Ei}\left (\frac {1}{1-5 x}\right )}{e}-15 \text {Ei}\left (\frac {5 x}{1-5 x}\right )+15 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\frac {x}{1-5 x}\right )-75 \int \frac {e^{-1+\frac {1}{1-5 x}}}{1-5 x} \, dx\\ &=-\frac {3 e^{\frac {5 x}{1-5 x}}}{x}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 21, normalized size = 0.95 \begin {gather*} -\frac {3 e^{\frac {5 x}{1-5 x}}}{x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 33, normalized size = 1.50 \begin {gather*} -\frac {{\left (x^{2} e^{\left (\frac {5 \, x}{5 \, x - 1}\right )} + 3\right )} e^{\left (-\frac {5 \, x}{5 \, x - 1}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.67, size = 94, normalized size = 4.27 \begin {gather*} -\frac {\frac {150 \, x e^{\left (-\frac {5 \, x}{5 \, x - 1}\right )}}{5 \, x - 1} - \frac {375 \, x^{2} e^{\left (-\frac {5 \, x}{5 \, x - 1}\right )}}{{\left (5 \, x - 1\right )}^{2}} - \frac {x}{5 \, x - 1} - 15 \, e^{\left (-\frac {5 \, x}{5 \, x - 1}\right )}}{5 \, {\left (\frac {x}{5 \, x - 1} - \frac {5 \, x^{2}}{{\left (5 \, x - 1\right )}^{2}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 21, normalized size = 0.95
method | result | size |
risch | \(-x -\frac {3 \,{\mathrm e}^{-\frac {5 x}{5 x -1}}}{x}\) | \(21\) |
derivativedivides | \(-x +\frac {1}{5}+\frac {15 \,{\mathrm e}^{-1-\frac {1}{5 x -1}}}{1+\frac {1}{5 x -1}}-15 \expIntegralEi \left (1, 1+\frac {1}{5 x -1}\right )\) | \(44\) |
default | \(-x +\frac {1}{5}+\frac {15 \,{\mathrm e}^{-1-\frac {1}{5 x -1}}}{1+\frac {1}{5 x -1}}-15 \expIntegralEi \left (1, 1+\frac {1}{5 x -1}\right )\) | \(44\) |
norman | \(\frac {\left (3+x^{2} {\mathrm e}^{\frac {5 x}{5 x -1}}-15 x -5 \,{\mathrm e}^{\frac {5 x}{5 x -1}} x^{3}\right ) {\mathrm e}^{-\frac {5 x}{5 x -1}}}{x \left (5 x -1\right )}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 26, normalized size = 1.18 \begin {gather*} -\frac {{\left (x^{2} e + 3 \, e^{\left (-\frac {1}{5 \, x - 1}\right )}\right )} e^{\left (-1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 20, normalized size = 0.91 \begin {gather*} -x-\frac {3\,{\mathrm {e}}^{-\frac {5\,x}{5\,x-1}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.68 \begin {gather*} - x - \frac {3 e^{- \frac {5 x}{5 x - 1}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________