Optimal. Leaf size=23 \[ \frac {2 \left (x+\log \left (1-\log \left (2 (1-x) x^2\right )\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+6 x+\left (-2+2 x+(2-2 x) \log \left (2 x^2-2 x^3\right )\right ) \log \left (1-\log \left (2 x^2-2 x^3\right )\right )}{x^2-x^3+\left (-x^2+x^3\right ) \log \left (2 x^2-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+6 x+\left (-2+2 x+(2-2 x) \log \left (2 x^2-2 x^3\right )\right ) \log \left (1-\log \left (2 x^2-2 x^3\right )\right )}{(1-x) x^2 \left (1-\log \left (-2 (-1+x) x^2\right )\right )} \, dx\\ &=\int \left (\frac {2 (-2+3 x)}{(-1+x) x^2 \left (-1+\log \left (-2 (-1+x) x^2\right )\right )}-\frac {2 \log \left (1-\log \left (-2 (-1+x) x^2\right )\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {-2+3 x}{(-1+x) x^2 \left (-1+\log \left (-2 (-1+x) x^2\right )\right )} \, dx-2 \int \frac {\log \left (1-\log \left (-2 (-1+x) x^2\right )\right )}{x^2} \, dx\\ &=2 \int \left (\frac {1}{(-1+x) \left (-1+\log \left (-2 (-1+x) x^2\right )\right )}+\frac {2}{x^2 \left (-1+\log \left (-2 (-1+x) x^2\right )\right )}-\frac {1}{x \left (-1+\log \left (-2 (-1+x) x^2\right )\right )}\right ) \, dx-2 \int \frac {\log \left (1-\log \left (-2 (-1+x) x^2\right )\right )}{x^2} \, dx\\ &=2 \int \frac {1}{(-1+x) \left (-1+\log \left (-2 (-1+x) x^2\right )\right )} \, dx-2 \int \frac {1}{x \left (-1+\log \left (-2 (-1+x) x^2\right )\right )} \, dx-2 \int \frac {\log \left (1-\log \left (-2 (-1+x) x^2\right )\right )}{x^2} \, dx+4 \int \frac {1}{x^2 \left (-1+\log \left (-2 (-1+x) x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 19, normalized size = 0.83 \begin {gather*} \frac {2 \log \left (1-\log \left (-2 (-1+x) x^2\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 22, normalized size = 0.96 \begin {gather*} \frac {2 \, \log \left (-\log \left (-2 \, x^{3} + 2 \, x^{2}\right ) + 1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 22, normalized size = 0.96 \begin {gather*} \frac {2 \, \log \left (-\log \left (-2 \, x^{3} + 2 \, x^{2}\right ) + 1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-2 x +2\right ) \ln \left (-2 x^{3}+2 x^{2}\right )+2 x -2\right ) \ln \left (-\ln \left (-2 x^{3}+2 x^{2}\right )+1\right )+6 x -4}{\left (x^{3}-x^{2}\right ) \ln \left (-2 x^{3}+2 x^{2}\right )-x^{3}+x^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 25, normalized size = 1.09 \begin {gather*} \frac {2 \, \log \left (-i \, \pi - \log \relax (2) - \log \left (x - 1\right ) - 2 \, \log \relax (x) + 1\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.57, size = 22, normalized size = 0.96 \begin {gather*} \frac {2\,\ln \left (1-\ln \left (2\,x^2-2\,x^3\right )\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 17, normalized size = 0.74 \begin {gather*} \frac {2 \log {\left (1 - \log {\left (- 2 x^{3} + 2 x^{2} \right )} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________