Optimal. Leaf size=19 \[ 25 \left (x+x \left (e^x+\left (-3+x^2\right )^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 60, normalized size of antiderivative = 3.16, number of steps used = 38, number of rules used = 4, integrand size = 72, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {1593, 2196, 2176, 2194} \begin {gather*} 25 x^{10}-300 x^8+50 e^x x^6+1400 x^6-300 e^x x^4-3000 x^4+500 e^x x^2+25 e^{2 x} x^2+2500 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2500 x^2-3000 x^4+1400 x^6-300 x^8+25 x^{10}+\int e^{2 x} \left (50 x+50 x^2\right ) \, dx+\int e^x \left (1000 x+500 x^2-1200 x^3-300 x^4+300 x^5+50 x^6\right ) \, dx\\ &=2500 x^2-3000 x^4+1400 x^6-300 x^8+25 x^{10}+\int e^{2 x} x (50+50 x) \, dx+\int \left (1000 e^x x+500 e^x x^2-1200 e^x x^3-300 e^x x^4+300 e^x x^5+50 e^x x^6\right ) \, dx\\ &=2500 x^2-3000 x^4+1400 x^6-300 x^8+25 x^{10}+50 \int e^x x^6 \, dx-300 \int e^x x^4 \, dx+300 \int e^x x^5 \, dx+500 \int e^x x^2 \, dx+1000 \int e^x x \, dx-1200 \int e^x x^3 \, dx+\int \left (50 e^{2 x} x+50 e^{2 x} x^2\right ) \, dx\\ &=1000 e^x x+2500 x^2+500 e^x x^2-1200 e^x x^3-3000 x^4-300 e^x x^4+300 e^x x^5+1400 x^6+50 e^x x^6-300 x^8+25 x^{10}+50 \int e^{2 x} x \, dx+50 \int e^{2 x} x^2 \, dx-300 \int e^x x^5 \, dx-1000 \int e^x \, dx-1000 \int e^x x \, dx+1200 \int e^x x^3 \, dx-1500 \int e^x x^4 \, dx+3600 \int e^x x^2 \, dx\\ &=-1000 e^x+25 e^{2 x} x+2500 x^2+4100 e^x x^2+25 e^{2 x} x^2-3000 x^4-1800 e^x x^4+1400 x^6+50 e^x x^6-300 x^8+25 x^{10}-25 \int e^{2 x} \, dx-50 \int e^{2 x} x \, dx+1000 \int e^x \, dx+1500 \int e^x x^4 \, dx-3600 \int e^x x^2 \, dx+6000 \int e^x x^3 \, dx-7200 \int e^x x \, dx\\ &=-\frac {25 e^{2 x}}{2}-7200 e^x x+2500 x^2+500 e^x x^2+25 e^{2 x} x^2+6000 e^x x^3-3000 x^4-300 e^x x^4+1400 x^6+50 e^x x^6-300 x^8+25 x^{10}+25 \int e^{2 x} \, dx-6000 \int e^x x^3 \, dx+7200 \int e^x \, dx+7200 \int e^x x \, dx-18000 \int e^x x^2 \, dx\\ &=7200 e^x+2500 x^2-17500 e^x x^2+25 e^{2 x} x^2-3000 x^4-300 e^x x^4+1400 x^6+50 e^x x^6-300 x^8+25 x^{10}-7200 \int e^x \, dx+18000 \int e^x x^2 \, dx+36000 \int e^x x \, dx\\ &=36000 e^x x+2500 x^2+500 e^x x^2+25 e^{2 x} x^2-3000 x^4-300 e^x x^4+1400 x^6+50 e^x x^6-300 x^8+25 x^{10}-36000 \int e^x \, dx-36000 \int e^x x \, dx\\ &=-36000 e^x+2500 x^2+500 e^x x^2+25 e^{2 x} x^2-3000 x^4-300 e^x x^4+1400 x^6+50 e^x x^6-300 x^8+25 x^{10}+36000 \int e^x \, dx\\ &=2500 x^2+500 e^x x^2+25 e^{2 x} x^2-3000 x^4-300 e^x x^4+1400 x^6+50 e^x x^6-300 x^8+25 x^{10}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 20, normalized size = 1.05 \begin {gather*} 25 x^2 \left (10+e^x-6 x^2+x^4\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 53, normalized size = 2.79 \begin {gather*} 25 \, x^{10} - 300 \, x^{8} + 1400 \, x^{6} - 3000 \, x^{4} + 25 \, x^{2} e^{\left (2 \, x\right )} + 2500 \, x^{2} + 50 \, {\left (x^{6} - 6 \, x^{4} + 10 \, x^{2}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 53, normalized size = 2.79 \begin {gather*} 25 \, x^{10} - 300 \, x^{8} + 1400 \, x^{6} - 3000 \, x^{4} + 25 \, x^{2} e^{\left (2 \, x\right )} + 2500 \, x^{2} + 50 \, {\left (x^{6} - 6 \, x^{4} + 10 \, x^{2}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 55, normalized size = 2.89
method | result | size |
risch | \(25 \,{\mathrm e}^{2 x} x^{2}+\left (50 x^{6}-300 x^{4}+500 x^{2}\right ) {\mathrm e}^{x}+25 x^{10}-300 x^{8}+1400 x^{6}-3000 x^{4}+2500 x^{2}\) | \(55\) |
default | \(25 \,{\mathrm e}^{2 x} x^{2}+50 x^{6} {\mathrm e}^{x}+500 \,{\mathrm e}^{x} x^{2}-300 \,{\mathrm e}^{x} x^{4}+2500 x^{2}-3000 x^{4}+1400 x^{6}-300 x^{8}+25 x^{10}\) | \(57\) |
norman | \(25 \,{\mathrm e}^{2 x} x^{2}+50 x^{6} {\mathrm e}^{x}+500 \,{\mathrm e}^{x} x^{2}-300 \,{\mathrm e}^{x} x^{4}+2500 x^{2}-3000 x^{4}+1400 x^{6}-300 x^{8}+25 x^{10}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 53, normalized size = 2.79 \begin {gather*} 25 \, x^{10} - 300 \, x^{8} + 1400 \, x^{6} - 3000 \, x^{4} + 25 \, x^{2} e^{\left (2 \, x\right )} + 2500 \, x^{2} + 50 \, {\left (x^{6} - 6 \, x^{4} + 10 \, x^{2}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 19, normalized size = 1.00 \begin {gather*} 25\,x^2\,{\left ({\mathrm {e}}^x-6\,x^2+x^4+10\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 53, normalized size = 2.79 \begin {gather*} 25 x^{10} - 300 x^{8} + 1400 x^{6} - 3000 x^{4} + 25 x^{2} e^{2 x} + 2500 x^{2} + \left (50 x^{6} - 300 x^{4} + 500 x^{2}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________