Optimal. Leaf size=31 \[ \frac {e^x}{7 x \left (\log (x)+\frac {3 \left (4-e^3+2 \log (x)\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-6+11 x-3 e^3 x\right )+e^x \left (5 x+x^2\right ) \log (x)}{1008 x-504 e^3 x+63 e^6 x+\left (1008 x+168 x^2+e^3 \left (-252 x-42 x^2\right )\right ) \log (x)+\left (252 x+84 x^2+7 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-6+11 x-3 e^3 x\right )+e^x \left (5 x+x^2\right ) \log (x)}{63 e^6 x+\left (1008-504 e^3\right ) x+\left (1008 x+168 x^2+e^3 \left (-252 x-42 x^2\right )\right ) \log (x)+\left (252 x+84 x^2+7 x^3\right ) \log ^2(x)} \, dx\\ &=\int \frac {e^x \left (-6+11 x-3 e^3 x\right )+e^x \left (5 x+x^2\right ) \log (x)}{\left (1008-504 e^3+63 e^6\right ) x+\left (1008 x+168 x^2+e^3 \left (-252 x-42 x^2\right )\right ) \log (x)+\left (252 x+84 x^2+7 x^3\right ) \log ^2(x)} \, dx\\ &=\int \frac {e^x \left (-6+\left (11-3 e^3\right ) x+x (5+x) \log (x)\right )}{7 x \left (3 \left (-4+e^3\right )-(6+x) \log (x)\right )^2} \, dx\\ &=\frac {1}{7} \int \frac {e^x \left (-6+\left (11-3 e^3\right ) x+x (5+x) \log (x)\right )}{x \left (3 \left (-4+e^3\right )-(6+x) \log (x)\right )^2} \, dx\\ &=\frac {1}{7} \int \left (\frac {e^x \left (-36-3 e^3 x-x^2\right )}{x (6+x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2}+\frac {e^x (5+x)}{(6+x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )}\right ) \, dx\\ &=\frac {1}{7} \int \frac {e^x \left (-36-3 e^3 x-x^2\right )}{x (6+x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2} \, dx+\frac {1}{7} \int \frac {e^x (5+x)}{(6+x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )} \, dx\\ &=\frac {1}{7} \int \left (-\frac {e^x}{\left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2}-\frac {6 e^x}{x \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2}+\frac {3 e^x \left (4-e^3\right )}{(6+x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2}\right ) \, dx+\frac {1}{7} \int \left (\frac {e^x}{12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)}+\frac {e^x}{(-6-x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )}\right ) \, dx\\ &=-\left (\frac {1}{7} \int \frac {e^x}{\left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2} \, dx\right )+\frac {1}{7} \int \frac {e^x}{12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)} \, dx+\frac {1}{7} \int \frac {e^x}{(-6-x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )} \, dx-\frac {6}{7} \int \frac {e^x}{x \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2} \, dx+\frac {1}{7} \left (3 \left (4-e^3\right )\right ) \int \frac {e^x}{(6+x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2} \, dx\\ &=-\left (\frac {1}{7} \int \frac {e^x}{\left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2} \, dx\right )+\frac {1}{7} \int \frac {e^x}{(-6-x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )} \, dx+\frac {1}{7} \int \frac {e^x}{-3 \left (-4+e^3\right )+(6+x) \log (x)} \, dx-\frac {6}{7} \int \frac {e^x}{x \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2} \, dx+\frac {1}{7} \left (3 \left (4-e^3\right )\right ) \int \frac {e^x}{(6+x) \left (12 \left (1-\frac {e^3}{4}\right )+6 \log (x)+x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.83, size = 24, normalized size = 0.77 \begin {gather*} \frac {e^x}{7 \left (12-3 e^3+6 \log (x)+x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 18, normalized size = 0.58 \begin {gather*} \frac {e^{x}}{7 \, {\left ({\left (x + 6\right )} \log \relax (x) - 3 \, e^{3} + 12\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 20, normalized size = 0.65 \begin {gather*} \frac {e^{x}}{7 \, {\left (x \log \relax (x) - 3 \, e^{3} + 6 \, \log \relax (x) + 12\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 0.71
method | result | size |
risch | \(-\frac {{\mathrm e}^{x}}{7 \left (-x \ln \relax (x )+3 \,{\mathrm e}^{3}-6 \ln \relax (x )-12\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 18, normalized size = 0.58 \begin {gather*} \frac {e^{x}}{7 \, {\left ({\left (x + 6\right )} \log \relax (x) - 3 \, e^{3} + 12\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^x\,\left (3\,x\,{\mathrm {e}}^3-11\,x+6\right )-{\mathrm {e}}^x\,\ln \relax (x)\,\left (x^2+5\,x\right )}{\left (7\,x^3+84\,x^2+252\,x\right )\,{\ln \relax (x)}^2+\left (1008\,x-{\mathrm {e}}^3\,\left (42\,x^2+252\,x\right )+168\,x^2\right )\,\ln \relax (x)+1008\,x-504\,x\,{\mathrm {e}}^3+63\,x\,{\mathrm {e}}^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 20, normalized size = 0.65 \begin {gather*} \frac {e^{x}}{7 x \log {\relax (x )} + 42 \log {\relax (x )} - 21 e^{3} + 84} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________