Optimal. Leaf size=30 \[ \frac {1}{16 \left (-x+\frac {1}{5} \left (e+x-e^{-\frac {2 (4+x)}{x^2}} x\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 7.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {100 e^{\frac {3 (8+2 x)}{x^2}} x^2+e^{\frac {2 (8+2 x)}{x^2}} \left (400+50 x+25 x^2\right )}{-8 x^5+e^{\frac {3 (8+2 x)}{x^2}} \left (8 e^3 x^2-96 e^2 x^3+384 e x^4-512 x^5\right )+e^{\frac {2 (8+2 x)}{x^2}} \left (-24 e^2 x^3+192 e x^4-384 x^5\right )+e^{\frac {8+2 x}{x^2}} \left (24 e x^4-96 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 e^{\frac {4 (4+x)}{x^2}} \left (16+2 x+\left (1+4 e^{\frac {2 (4+x)}{x^2}}\right ) x^2\right )}{8 x^2 \left (e^{\frac {8+2 x+x^2}{x^2}}-x-4 e^{\frac {2 (4+x)}{x^2}} x\right )^3} \, dx\\ &=\frac {25}{8} \int \frac {e^{\frac {4 (4+x)}{x^2}} \left (16+2 x+\left (1+4 e^{\frac {2 (4+x)}{x^2}}\right ) x^2\right )}{x^2 \left (e^{\frac {8+2 x+x^2}{x^2}}-x-4 e^{\frac {2 (4+x)}{x^2}} x\right )^3} \, dx\\ &=\frac {25}{8} \int \left (\frac {4 e^{\frac {4 (4+x)}{x^2}}}{(e-4 x) \left (e^{1+\frac {8}{x^2}+\frac {2}{x}}-x-4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^2}+\frac {e^{\frac {4 (4+x)}{x^2}} \left (16 e-2 (32-e) x-(8-e) x^2\right )}{(e-4 x) x^2 \left (e^{1+\frac {8}{x^2}+\frac {2}{x}}-x-4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^3}\right ) \, dx\\ &=\frac {25}{8} \int \frac {e^{\frac {4 (4+x)}{x^2}} \left (16 e-2 (32-e) x-(8-e) x^2\right )}{(e-4 x) x^2 \left (e^{1+\frac {8}{x^2}+\frac {2}{x}}-x-4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^3} \, dx+\frac {25}{2} \int \frac {e^{\frac {4 (4+x)}{x^2}}}{(e-4 x) \left (e^{1+\frac {8}{x^2}+\frac {2}{x}}-x-4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^2} \, dx\\ &=\frac {25}{8} \int \left (\frac {e^{1+\frac {4 (4+x)}{x^2}}}{(e-4 x) \left (e^{1+\frac {8}{x^2}+\frac {2}{x}}-x-4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^3}-\frac {16 e^{\frac {4 (4+x)}{x^2}}}{x^2 \left (-e^{1+\frac {8}{x^2}+\frac {2}{x}}+x+4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^3}-\frac {2 e^{\frac {4 (4+x)}{x^2}}}{x \left (-e^{1+\frac {8}{x^2}+\frac {2}{x}}+x+4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^3}\right ) \, dx+\frac {25}{2} \int \frac {e^{\frac {4 (4+x)}{x^2}}}{(e-4 x) \left (e^{1+\frac {8}{x^2}+\frac {2}{x}}-x-4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^2} \, dx\\ &=\frac {25}{8} \int \frac {e^{1+\frac {4 (4+x)}{x^2}}}{(e-4 x) \left (e^{1+\frac {8}{x^2}+\frac {2}{x}}-x-4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^3} \, dx-\frac {25}{4} \int \frac {e^{\frac {4 (4+x)}{x^2}}}{x \left (-e^{1+\frac {8}{x^2}+\frac {2}{x}}+x+4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^3} \, dx+\frac {25}{2} \int \frac {e^{\frac {4 (4+x)}{x^2}}}{(e-4 x) \left (e^{1+\frac {8}{x^2}+\frac {2}{x}}-x-4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^2} \, dx-50 \int \frac {e^{\frac {4 (4+x)}{x^2}}}{x^2 \left (-e^{1+\frac {8}{x^2}+\frac {2}{x}}+x+4 e^{\frac {8}{x^2}+\frac {2}{x}} x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.68, size = 47, normalized size = 1.57 \begin {gather*} \frac {25 e^{\frac {4 (4+x)}{x^2}}}{16 \left (-e^{\frac {8+2 x+x^2}{x^2}}+x+4 e^{\frac {2 (4+x)}{x^2}} x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 62, normalized size = 2.07 \begin {gather*} \frac {25 \, e^{\left (\frac {4 \, {\left (x + 4\right )}}{x^{2}}\right )}}{16 \, {\left (x^{2} + {\left (16 \, x^{2} - 8 \, x e + e^{2}\right )} e^{\left (\frac {4 \, {\left (x + 4\right )}}{x^{2}}\right )} + 2 \, {\left (4 \, x^{2} - x e\right )} e^{\left (\frac {2 \, {\left (x + 4\right )}}{x^{2}}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 100, normalized size = 3.33 \begin {gather*} \frac {25 \, e^{\left (\frac {4 \, {\left (x + 4\right )}}{x^{2}}\right )}}{16 \, {\left (16 \, x^{2} e^{\left (\frac {4 \, {\left (x + 4\right )}}{x^{2}}\right )} + 8 \, x^{2} e^{\left (\frac {2 \, {\left (x + 4\right )}}{x^{2}}\right )} + x^{2} - 8 \, x e^{\left (\frac {x^{2} + 2 \, x + 8}{x^{2}} + \frac {2 \, {\left (x + 4\right )}}{x^{2}}\right )} - 2 \, x e^{\left (\frac {x^{2} + 2 \, x + 8}{x^{2}}\right )} + e^{\left (\frac {2 \, {\left (x^{2} + 2 \, x + 8\right )}}{x^{2}}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 47, normalized size = 1.57
method | result | size |
norman | \(\frac {25 \,{\mathrm e}^{\frac {4 x +16}{x^{2}}}}{16 \left ({\mathrm e} \,{\mathrm e}^{\frac {2 x +8}{x^{2}}}-4 x \,{\mathrm e}^{\frac {2 x +8}{x^{2}}}-x \right )^{2}}\) | \(47\) |
risch | \(\frac {25}{16 \left ({\mathrm e}^{2}-8 x \,{\mathrm e}+16 x^{2}\right )}+\frac {25 \left (2 \,{\mathrm e}^{\frac {x^{2}+2 x +8}{x^{2}}}-8 x \,{\mathrm e}^{\frac {2 x +8}{x^{2}}}-x \right ) x}{16 \left ({\mathrm e}^{2}-8 x \,{\mathrm e}+16 x^{2}\right ) \left ({\mathrm e}^{\frac {x^{2}+2 x +8}{x^{2}}}-4 x \,{\mathrm e}^{\frac {2 x +8}{x^{2}}}-x \right )^{2}}\) | \(99\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 71, normalized size = 2.37 \begin {gather*} \frac {25 \, e^{\left (\frac {4}{x} + \frac {16}{x^{2}}\right )}}{16 \, {\left (x^{2} + {\left (16 \, x^{2} - 8 \, x e + e^{2}\right )} e^{\left (\frac {4}{x} + \frac {16}{x^{2}}\right )} + 2 \, {\left (4 \, x^{2} - x e\right )} e^{\left (\frac {2}{x} + \frac {8}{x^{2}}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {100\,x^2\,{\mathrm {e}}^{\frac {3\,\left (2\,x+8\right )}{x^2}}+{\mathrm {e}}^{\frac {2\,\left (2\,x+8\right )}{x^2}}\,\left (25\,x^2+50\,x+400\right )}{{\mathrm {e}}^{\frac {2\,\left (2\,x+8\right )}{x^2}}\,\left (384\,x^5-192\,\mathrm {e}\,x^4+24\,{\mathrm {e}}^2\,x^3\right )-{\mathrm {e}}^{\frac {2\,x+8}{x^2}}\,\left (24\,x^4\,\mathrm {e}-96\,x^5\right )-{\mathrm {e}}^{\frac {3\,\left (2\,x+8\right )}{x^2}}\,\left (-512\,x^5+384\,\mathrm {e}\,x^4-96\,{\mathrm {e}}^2\,x^3+8\,{\mathrm {e}}^3\,x^2\right )+8\,x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.56, size = 150, normalized size = 5.00 \begin {gather*} \frac {- 25 x^{2} + \left (- 200 x^{2} + 50 e x\right ) e^{\frac {2 x + 8}{x^{2}}}}{256 x^{4} - 128 e x^{3} + 16 x^{2} e^{2} + \left (2048 x^{4} - 1536 e x^{3} + 384 x^{2} e^{2} - 32 x e^{3}\right ) e^{\frac {2 x + 8}{x^{2}}} + \left (4096 x^{4} - 4096 e x^{3} + 1536 x^{2} e^{2} - 256 x e^{3} + 16 e^{4}\right ) e^{\frac {2 \left (2 x + 8\right )}{x^{2}}}} + \frac {25}{256 x^{2} - 128 e x + 16 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________