Optimal. Leaf size=16 \[ e^{2+4\ 3^{-1-e^4+x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {12, 2282, 2194} \begin {gather*} e^{4\ 3^{x-e^4-1}+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(4 \log (3)) \int 3^{-1-e^4+x} e^{3^{-1-e^4+x} \left (4+2\ 3^{1+e^4-x}\right )} \, dx\\ &=4 \operatorname {Subst}\left (\int e^{2+4 x} \, dx,x,3^{-1-e^4+x}\right )\\ &=e^{2+4\ 3^{-1-e^4+x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 1.00 \begin {gather*} e^{2+4\ 3^{-1-e^4+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 25, normalized size = 1.56 \begin {gather*} e^{\left (\frac {2 \, {\left (3^{-x + e^{4} + 1} + 2\right )}}{3^{-x + e^{4} + 1}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 13, normalized size = 0.81 \begin {gather*} e^{\left (\frac {4}{3} \cdot 3^{x - e^{4}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 19, normalized size = 1.19
method | result | size |
derivativedivides | \({\mathrm e}^{4 \,{\mathrm e}^{-\left ({\mathrm e}^{4}-x +1\right ) \ln \relax (3)}+2}\) | \(19\) |
default | \({\mathrm e}^{4 \,{\mathrm e}^{-\left ({\mathrm e}^{4}-x +1\right ) \ln \relax (3)}+2}\) | \(19\) |
risch | \({\mathrm e}^{\frac {2 \left (3^{{\mathrm e}^{4}-x +1}+2\right ) 3^{x -{\mathrm e}^{4}}}{3}}\) | \(26\) |
norman | \({\mathrm e}^{\left (2 \,{\mathrm e}^{\left ({\mathrm e}^{4}-x +1\right ) \ln \relax (3)}+4\right ) {\mathrm e}^{-\left ({\mathrm e}^{4}-x +1\right ) \ln \relax (3)}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 24, normalized size = 1.50 \begin {gather*} 3^{\frac {4 \cdot 3^{x - e^{4} - 1}}{\log \relax (3)} + \frac {2}{\log \relax (3)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.63, size = 15, normalized size = 0.94 \begin {gather*} {\mathrm {e}}^2\,{\mathrm {e}}^{4\,3^{x-{\mathrm {e}}^4-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 27, normalized size = 1.69 \begin {gather*} e^{\left (2 e^{\left (- x + 1 + e^{4}\right ) \log {\relax (3 )}} + 4\right ) e^{- \left (- x + 1 + e^{4}\right ) \log {\relax (3 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________