Optimal. Leaf size=25 \[ \frac {1}{x \left (-1-\frac {1}{25 x}+x+\frac {e^x}{\log (\log (x))}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {625 e^x+e^x (-625-625 x) \log (x) \log (\log (x))+(625-1250 x) \log (x) \log ^2(\log (x))}{625 e^{2 x} x^2 \log (x)+e^x \left (-50 x-1250 x^2+1250 x^3\right ) \log (x) \log (\log (x))+\left (1+50 x+575 x^2-1250 x^3+625 x^4\right ) \log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {625 \left (e^x-\log (x) \log (\log (x)) \left (e^x (1+x)+(-1+2 x) \log (\log (x))\right )\right )}{\log (x) \left (25 e^x x+\left (-1-25 x+25 x^2\right ) \log (\log (x))\right )^2} \, dx\\ &=625 \int \frac {e^x-\log (x) \log (\log (x)) \left (e^x (1+x)+(-1+2 x) \log (\log (x))\right )}{\log (x) \left (25 e^x x+\left (-1-25 x+25 x^2\right ) \log (\log (x))\right )^2} \, dx\\ &=625 \int \left (-\frac {-1+\log (x) \log (\log (x))+x \log (x) \log (\log (x))}{25 x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )}+\frac {\log (\log (x)) \left (1+25 x-25 x^2-\log (x) \log (\log (x))-x \log (x) \log (\log (x))-50 x^2 \log (x) \log (\log (x))+25 x^3 \log (x) \log (\log (x))\right )}{25 x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2}\right ) \, dx\\ &=-\left (25 \int \frac {-1+\log (x) \log (\log (x))+x \log (x) \log (\log (x))}{x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )} \, dx\right )+25 \int \frac {\log (\log (x)) \left (1+25 x-25 x^2-\log (x) \log (\log (x))-x \log (x) \log (\log (x))-50 x^2 \log (x) \log (\log (x))+25 x^3 \log (x) \log (\log (x))\right )}{x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2} \, dx\\ &=25 \int \frac {\log (\log (x)) \left (1+25 x-25 x^2+\left (-1-x-50 x^2+25 x^3\right ) \log (x) \log (\log (x))\right )}{x \log (x) \left (25 e^x x+\left (-1-25 x+25 x^2\right ) \log (\log (x))\right )^2} \, dx-25 \int \left (-\frac {1}{x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )}+\frac {\log (\log (x))}{25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))}+\frac {\log (\log (x))}{x \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )}\right ) \, dx\\ &=25 \int \frac {1}{x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )} \, dx-25 \int \frac {\log (\log (x))}{25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))} \, dx-25 \int \frac {\log (\log (x))}{x \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )} \, dx+25 \int \left (\frac {25 \log (\log (x))}{\log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2}+\frac {\log (\log (x))}{x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2}-\frac {25 x \log (\log (x))}{\log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2}-\frac {\log ^2(\log (x))}{\left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2}-\frac {\log ^2(\log (x))}{x \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2}-\frac {50 x \log ^2(\log (x))}{\left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2}+\frac {25 x^2 \log ^2(\log (x))}{\left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2}\right ) \, dx\\ &=25 \int \frac {\log (\log (x))}{x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2} \, dx-25 \int \frac {\log ^2(\log (x))}{\left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2} \, dx-25 \int \frac {\log ^2(\log (x))}{x \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2} \, dx+25 \int \frac {1}{x \log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )} \, dx-25 \int \frac {\log (\log (x))}{25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))} \, dx-25 \int \frac {\log (\log (x))}{x \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )} \, dx+625 \int \frac {\log (\log (x))}{\log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2} \, dx-625 \int \frac {x \log (\log (x))}{\log (x) \left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2} \, dx+625 \int \frac {x^2 \log ^2(\log (x))}{\left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2} \, dx-1250 \int \frac {x \log ^2(\log (x))}{\left (25 e^x x-\log (\log (x))-25 x \log (\log (x))+25 x^2 \log (\log (x))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.94, size = 28, normalized size = 1.12 \begin {gather*} \frac {25 \log (\log (x))}{25 e^x x+\left (-1-25 x+25 x^2\right ) \log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 27, normalized size = 1.08 \begin {gather*} \frac {25 \, \log \left (\log \relax (x)\right )}{25 \, x e^{x} + {\left (25 \, x^{2} - 25 \, x - 1\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 32, normalized size = 1.28 \begin {gather*} \frac {25 \, \log \left (\log \relax (x)\right )}{25 \, x^{2} \log \left (\log \relax (x)\right ) + 25 \, x e^{x} - 25 \, x \log \left (\log \relax (x)\right ) - \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 60, normalized size = 2.40
method | result | size |
risch | \(\frac {25}{25 x^{2}-25 x -1}-\frac {625 x \,{\mathrm e}^{x}}{\left (25 x^{2}-25 x -1\right ) \left (25 x^{2} \ln \left (\ln \relax (x )\right )-25 x \ln \left (\ln \relax (x )\right )+25 \,{\mathrm e}^{x} x -\ln \left (\ln \relax (x )\right )\right )}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 27, normalized size = 1.08 \begin {gather*} \frac {25 \, \log \left (\log \relax (x)\right )}{25 \, x e^{x} + {\left (25 \, x^{2} - 25 \, x - 1\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.42, size = 30, normalized size = 1.20 \begin {gather*} -\frac {25\,\ln \left (\ln \relax (x)\right )}{\ln \left (\ln \relax (x)\right )+25\,x\,\ln \left (\ln \relax (x)\right )-25\,x^2\,\ln \left (\ln \relax (x)\right )-25\,x\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 36, normalized size = 1.44 \begin {gather*} \frac {25 \log {\left (\log {\relax (x )} \right )}}{25 x^{2} \log {\left (\log {\relax (x )} \right )} + 25 x e^{x} - 25 x \log {\left (\log {\relax (x )} \right )} - \log {\left (\log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________