3.62.51 \(\int \frac {-192+144 x+104 x^2-32 x^3-2 x^6}{x^5} \, dx\)

Optimal. Leaf size=29 \[ -x^2+\frac {1}{3} \left (1+4 \left (\left (-4-\frac {3 (-2+x)}{x^2}\right )^2+\log (4)\right )\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 26, normalized size of antiderivative = 0.90, number of steps used = 2, number of rules used = 1, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {14} \begin {gather*} \frac {48}{x^4}-\frac {48}{x^3}-x^2-\frac {52}{x^2}+\frac {32}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-192 + 144*x + 104*x^2 - 32*x^3 - 2*x^6)/x^5,x]

[Out]

48/x^4 - 48/x^3 - 52/x^2 + 32/x - x^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {192}{x^5}+\frac {144}{x^4}+\frac {104}{x^3}-\frac {32}{x^2}-2 x\right ) \, dx\\ &=\frac {48}{x^4}-\frac {48}{x^3}-\frac {52}{x^2}+\frac {32}{x}-x^2\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 30, normalized size = 1.03 \begin {gather*} -2 \left (-\frac {24}{x^4}+\frac {24}{x^3}+\frac {26}{x^2}-\frac {16}{x}+\frac {x^2}{2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-192 + 144*x + 104*x^2 - 32*x^3 - 2*x^6)/x^5,x]

[Out]

-2*(-24/x^4 + 24/x^3 + 26/x^2 - 16/x + x^2/2)

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 23, normalized size = 0.79 \begin {gather*} -\frac {x^{6} - 32 \, x^{3} + 52 \, x^{2} + 48 \, x - 48}{x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^6-32*x^3+104*x^2+144*x-192)/x^5,x, algorithm="fricas")

[Out]

-(x^6 - 32*x^3 + 52*x^2 + 48*x - 48)/x^4

________________________________________________________________________________________

giac [A]  time = 0.20, size = 26, normalized size = 0.90 \begin {gather*} -x^{2} + \frac {4 \, {\left (8 \, x^{3} - 13 \, x^{2} - 12 \, x + 12\right )}}{x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^6-32*x^3+104*x^2+144*x-192)/x^5,x, algorithm="giac")

[Out]

-x^2 + 4*(8*x^3 - 13*x^2 - 12*x + 12)/x^4

________________________________________________________________________________________

maple [A]  time = 0.04, size = 24, normalized size = 0.83




method result size



gosper \(-\frac {x^{6}-32 x^{3}+52 x^{2}+48 x -48}{x^{4}}\) \(24\)
norman \(\frac {-x^{6}+32 x^{3}-52 x^{2}-48 x +48}{x^{4}}\) \(25\)
risch \(-x^{2}+\frac {32 x^{3}-52 x^{2}-48 x +48}{x^{4}}\) \(26\)
default \(-x^{2}+\frac {48}{x^{4}}+\frac {32}{x}-\frac {52}{x^{2}}-\frac {48}{x^{3}}\) \(27\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x^6-32*x^3+104*x^2+144*x-192)/x^5,x,method=_RETURNVERBOSE)

[Out]

-(x^6-32*x^3+52*x^2+48*x-48)/x^4

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 26, normalized size = 0.90 \begin {gather*} -x^{2} + \frac {4 \, {\left (8 \, x^{3} - 13 \, x^{2} - 12 \, x + 12\right )}}{x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x^6-32*x^3+104*x^2+144*x-192)/x^5,x, algorithm="maxima")

[Out]

-x^2 + 4*(8*x^3 - 13*x^2 - 12*x + 12)/x^4

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 26, normalized size = 0.90 \begin {gather*} -x^2-\frac {-32\,x^3+52\,x^2+48\,x-48}{x^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(32*x^3 - 104*x^2 - 144*x + 2*x^6 + 192)/x^5,x)

[Out]

- x^2 - (48*x + 52*x^2 - 32*x^3 - 48)/x^4

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 22, normalized size = 0.76 \begin {gather*} - x^{2} - \frac {- 32 x^{3} + 52 x^{2} + 48 x - 48}{x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*x**6-32*x**3+104*x**2+144*x-192)/x**5,x)

[Out]

-x**2 - (-32*x**3 + 52*x**2 + 48*x - 48)/x**4

________________________________________________________________________________________