Optimal. Leaf size=31 \[ x-\frac {2 \left (1+5 \left (2 x-\left (5+\log ^2\left (\frac {9}{\log (5)}\right )\right )^2\right )\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 39, normalized size of antiderivative = 1.26, number of steps used = 10, number of rules used = 7, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {6741, 6742, 2298, 2353, 2297, 2302, 30} \begin {gather*} x+\frac {2 \left (124+5 \log ^4\left (\frac {9}{\log (5)}\right )+50 \log ^2\left (\frac {9}{\log (5)}\right )\right )}{\log (x)}-\frac {20 x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20 x-20 x \log (x)+x \log ^2(x)-248 \left (1+\frac {5}{124} \log ^2\left (\frac {9}{\log (5)}\right ) \left (10+\log ^2\left (\frac {9}{\log (5)}\right )\right )\right )}{x \log ^2(x)} \, dx\\ &=\int \left (1-\frac {20}{\log (x)}+\frac {2 \left (-124+10 x-50 \log ^2\left (\frac {9}{\log (5)}\right )-5 \log ^4\left (\frac {9}{\log (5)}\right )\right )}{x \log ^2(x)}\right ) \, dx\\ &=x+2 \int \frac {-124+10 x-50 \log ^2\left (\frac {9}{\log (5)}\right )-5 \log ^4\left (\frac {9}{\log (5)}\right )}{x \log ^2(x)} \, dx-20 \int \frac {1}{\log (x)} \, dx\\ &=x-20 \text {li}(x)+2 \int \left (\frac {10}{\log ^2(x)}+\frac {-124-50 \log ^2\left (\frac {9}{\log (5)}\right )-5 \log ^4\left (\frac {9}{\log (5)}\right )}{x \log ^2(x)}\right ) \, dx\\ &=x-20 \text {li}(x)+20 \int \frac {1}{\log ^2(x)} \, dx-\left (2 \left (124+50 \log ^2\left (\frac {9}{\log (5)}\right )+5 \log ^4\left (\frac {9}{\log (5)}\right )\right )\right ) \int \frac {1}{x \log ^2(x)} \, dx\\ &=x-\frac {20 x}{\log (x)}-20 \text {li}(x)+20 \int \frac {1}{\log (x)} \, dx-\left (2 \left (124+50 \log ^2\left (\frac {9}{\log (5)}\right )+5 \log ^4\left (\frac {9}{\log (5)}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )\\ &=x-\frac {20 x}{\log (x)}+\frac {2 \left (124+50 \log ^2\left (\frac {9}{\log (5)}\right )+5 \log ^4\left (\frac {9}{\log (5)}\right )\right )}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 45, normalized size = 1.45 \begin {gather*} x+\frac {248}{\log (x)}-\frac {20 x}{\log (x)}+\frac {100 \log ^2\left (\frac {9}{\log (5)}\right )}{\log (x)}+\frac {10 \log ^4\left (\frac {9}{\log (5)}\right )}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 36, normalized size = 1.16 \begin {gather*} \frac {10 \, \log \left (\frac {9}{\log \relax (5)}\right )^{4} + x \log \relax (x) + 100 \, \log \left (\frac {9}{\log \relax (5)}\right )^{2} - 20 \, x + 248}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 75, normalized size = 2.42 \begin {gather*} x + \frac {2 \, {\left (80 \, \log \relax (3)^{4} - 160 \, \log \relax (3)^{3} \log \left (\log \relax (5)\right ) + 120 \, \log \relax (3)^{2} \log \left (\log \relax (5)\right )^{2} - 40 \, \log \relax (3) \log \left (\log \relax (5)\right )^{3} + 5 \, \log \left (\log \relax (5)\right )^{4} + 200 \, \log \relax (3)^{2} - 200 \, \log \relax (3) \log \left (\log \relax (5)\right ) + 50 \, \log \left (\log \relax (5)\right )^{2} - 10 \, x + 124\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 76, normalized size = 2.45
method | result | size |
risch | \(x +\frac {10 \ln \left (\ln \relax (5)\right )^{4}-80 \ln \relax (3) \ln \left (\ln \relax (5)\right )^{3}+240 \ln \relax (3)^{2} \ln \left (\ln \relax (5)\right )^{2}-320 \ln \relax (3)^{3} \ln \left (\ln \relax (5)\right )+160 \ln \relax (3)^{4}+100 \ln \left (\ln \relax (5)\right )^{2}-400 \ln \relax (3) \ln \left (\ln \relax (5)\right )+400 \ln \relax (3)^{2}-20 x +248}{\ln \relax (x )}\) | \(76\) |
norman | \(\frac {x \ln \relax (x )-20 x +248+10 \ln \left (\ln \relax (5)\right )^{4}-80 \ln \relax (3) \ln \left (\ln \relax (5)\right )^{3}+240 \ln \relax (3)^{2} \ln \left (\ln \relax (5)\right )^{2}-320 \ln \relax (3)^{3} \ln \left (\ln \relax (5)\right )+160 \ln \relax (3)^{4}+100 \ln \left (\ln \relax (5)\right )^{2}-400 \ln \relax (3) \ln \left (\ln \relax (5)\right )+400 \ln \relax (3)^{2}}{\ln \relax (x )}\) | \(77\) |
default | \(x +\frac {160 \ln \relax (3)^{4}}{\ln \relax (x )}-\frac {320 \ln \relax (3)^{3} \ln \left (\ln \relax (5)\right )}{\ln \relax (x )}+\frac {240 \ln \relax (3)^{2} \ln \left (\ln \relax (5)\right )^{2}}{\ln \relax (x )}-\frac {80 \ln \relax (3) \ln \left (\ln \relax (5)\right )^{3}}{\ln \relax (x )}+\frac {10 \ln \left (\ln \relax (5)\right )^{4}}{\ln \relax (x )}+\frac {400 \ln \relax (3)^{2}}{\ln \relax (x )}-\frac {400 \ln \relax (3) \ln \left (\ln \relax (5)\right )}{\ln \relax (x )}+\frac {100 \ln \left (\ln \relax (5)\right )^{2}}{\ln \relax (x )}-\frac {20 x}{\ln \relax (x )}+\frac {248}{\ln \relax (x )}\) | \(110\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 51, normalized size = 1.65 \begin {gather*} \frac {10 \, \log \left (\frac {9}{\log \relax (5)}\right )^{4}}{\log \relax (x)} + x + \frac {100 \, \log \left (\frac {9}{\log \relax (5)}\right )^{2}}{\log \relax (x)} + \frac {248}{\log \relax (x)} - 20 \, {\rm Ei}\left (\log \relax (x)\right ) + 20 \, \Gamma \left (-1, -\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.31, size = 34, normalized size = 1.10 \begin {gather*} x+\frac {100\,{\ln \left (\frac {9}{\ln \relax (5)}\right )}^2-20\,x+10\,{\ln \left (\frac {9}{\ln \relax (5)}\right )}^4+248}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.12, size = 87, normalized size = 2.81 \begin {gather*} x + \frac {- 20 x - 400 \log {\relax (3 )} \log {\left (\log {\relax (5 )} \right )} - 320 \log {\relax (3 )}^{3} \log {\left (\log {\relax (5 )} \right )} - 80 \log {\relax (3 )} \log {\left (\log {\relax (5 )} \right )}^{3} + 10 \log {\left (\log {\relax (5 )} \right )}^{4} + 100 \log {\left (\log {\relax (5 )} \right )}^{2} + 240 \log {\relax (3 )}^{2} \log {\left (\log {\relax (5 )} \right )}^{2} + 160 \log {\relax (3 )}^{4} + 248 + 400 \log {\relax (3 )}^{2}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________