Optimal. Leaf size=24 \[ x-\frac {1}{5} \log \left ((e+x) \left (-e^{3+e^4}+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 28, normalized size of antiderivative = 1.17, number of steps used = 3, number of rules used = 2, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2074, 260} \begin {gather*} -\frac {1}{5} \log \left (e^{3+e^4}-x^2\right )+x-\frac {1}{5} \log (x+e) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 260
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {1}{5 (e+x)}-\frac {2 x}{5 \left (-e^{3+e^4}+x^2\right )}\right ) \, dx\\ &=x-\frac {1}{5} \log (e+x)-\frac {2}{5} \int \frac {x}{-e^{3+e^4}+x^2} \, dx\\ &=x-\frac {1}{5} \log (e+x)-\frac {1}{5} \log \left (e^{3+e^4}-x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 32, normalized size = 1.33 \begin {gather*} \frac {1}{5} \left (5 (e+x)-\log (e+x)-\log \left (e^{3+e^4}-x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 26, normalized size = 1.08 \begin {gather*} x - \frac {1}{5} \, \log \left (x^{3} + x^{2} e - {\left (x + e\right )} e^{\left (e^{4} + 3\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 25, normalized size = 1.04 \begin {gather*} x - \frac {1}{5} \, \log \left ({\left | x^{2} - e^{\left (e^{4} + 3\right )} \right |}\right ) - \frac {1}{5} \, \log \left ({\left | x + e \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 24, normalized size = 1.00
method | result | size |
norman | \(x -\frac {\ln \left (-x^{2}+{\mathrm e}^{{\mathrm e}^{4}+3}\right )}{5}-\frac {\ln \left (x +{\mathrm e}\right )}{5}\) | \(24\) |
default | \(x -\frac {\ln \left (x^{2} {\mathrm e}+x^{3}-{\mathrm e}^{{\mathrm e}^{4}+3} x -{\mathrm e}^{4+{\mathrm e}^{4}}\right )}{5}\) | \(31\) |
risch | \(x -\frac {\ln \left (x^{2} {\mathrm e}+x^{3}-{\mathrm e}^{{\mathrm e}^{4}+3} x -{\mathrm e}^{4+{\mathrm e}^{4}}\right )}{5}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 23, normalized size = 0.96 \begin {gather*} x - \frac {1}{5} \, \log \left (x^{2} - e^{\left (e^{4} + 3\right )}\right ) - \frac {1}{5} \, \log \left (x + e\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.57, size = 30, normalized size = 1.25 \begin {gather*} x-\frac {\ln \left (x^3+\mathrm {e}\,x^2-{\mathrm {e}}^{{\mathrm {e}}^4+3}\,x-{\mathrm {e}}^{{\mathrm {e}}^4+4}\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 32, normalized size = 1.33 \begin {gather*} x - \frac {\log {\left (x^{3} + e x^{2} - x e^{3} e^{e^{4}} - e^{4} e^{e^{4}} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________