Optimal. Leaf size=24 \[ e^{\frac {1}{x \left (3+x-e^{5+x} \left (x+\frac {1}{\log (x)}\right )\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 32, normalized size = 1.33 \begin {gather*} e^{\frac {\log ^2(x)}{x \left (e^{5+x}+\left (-3+\left (-1+e^{5+x}\right ) x\right ) \log (x)\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 62, normalized size = 2.58 \begin {gather*} e^{\left (\frac {1}{x^{3} + 6 \, x^{2} + x e^{\left (2 \, x + 2 \, \log \left (\frac {x \log \relax (x) + 1}{\log \relax (x)}\right ) + 10\right )} - 2 \, {\left (x^{2} + 3 \, x\right )} e^{\left (x + \log \left (\frac {x \log \relax (x) + 1}{\log \relax (x)}\right ) + 5\right )} + 9 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.45, size = 578, normalized size = 24.08
method | result | size |
risch | \({\mathrm e}^{\frac {\ln \relax (x )^{2}}{x \left (-2 \ln \relax (x )^{2} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{3}}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (i \left (x \ln \relax (x )+1\right )\right )}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (x )+1\right )\right )}{2}} {\mathrm e}^{5+x} x^{2}-6 \ln \relax (x )^{2} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{3}}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (i \left (x \ln \relax (x )+1\right )\right )}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (x )+1\right )\right )}{2}} {\mathrm e}^{5+x} x -2 \ln \relax (x ) {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{3}}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (i \left (x \ln \relax (x )+1\right )\right )}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (x )+1\right )\right )}{2}} {\mathrm e}^{5+x} x -6 \,{\mathrm e}^{5+x} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{3}}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )}{2}} {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (i \left (x \ln \relax (x )+1\right )\right )}{2}} {\mathrm e}^{-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )+1\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (x \ln \relax (x )+1\right )\right )}{2}} \ln \relax (x )+\ln \relax (x )^{2} {\mathrm e}^{2 x +10} x^{2}+x^{2} \ln \relax (x )^{2}+6 x \ln \relax (x )^{2}+2 \ln \relax (x ) {\mathrm e}^{2 x +10} x +9 \ln \relax (x )^{2}+{\mathrm e}^{2 x +10}\right )}}\) | \(578\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 9.27, size = 500, normalized size = 20.83 \begin {gather*} e^{\left (\frac {e^{\left (x + 5\right )} \log \relax (x)^{3}}{3 \, {\left (x^{2} e^{\left (2 \, x + 10\right )} + x^{2} - 2 \, {\left (x^{2} e^{5} + 3 \, x e^{5}\right )} e^{x} + 6 \, x + 9\right )} \log \relax (x)^{3} - {\left (x^{2} e^{\left (3 \, x + 15\right )} - 2 \, {\left (x^{2} e^{10} + 6 \, x e^{10}\right )} e^{\left (2 \, x\right )} + {\left (x^{2} e^{5} + 12 \, x e^{5} + 27 \, e^{5}\right )} e^{x}\right )} \log \relax (x)^{2} + {\left ({\left (2 \, x e^{10} + 9 \, e^{10}\right )} e^{\left (2 \, x\right )} - 2 \, x e^{\left (3 \, x + 15\right )}\right )} \log \relax (x) - e^{\left (3 \, x + 15\right )}} - \frac {e^{\left (x + 5\right )} \log \relax (x)^{3}}{9 \, {\left (x e^{\left (x + 5\right )} - x - 3\right )} \log \relax (x)^{3} - 3 \, {\left (2 \, x e^{\left (2 \, x + 10\right )} - {\left (2 \, x e^{5} + 9 \, e^{5}\right )} e^{x}\right )} \log \relax (x)^{2} - {\left ({\left (x e^{10} + 9 \, e^{10}\right )} e^{\left (2 \, x\right )} - x e^{\left (3 \, x + 15\right )}\right )} \log \relax (x) + e^{\left (3 \, x + 15\right )}} - \frac {\log \relax (x)^{3}}{3 \, {\left (x^{2} e^{\left (2 \, x + 10\right )} + x^{2} - 2 \, {\left (x^{2} e^{5} + 3 \, x e^{5}\right )} e^{x} + 6 \, x + 9\right )} \log \relax (x)^{3} - {\left (x^{2} e^{\left (3 \, x + 15\right )} - 2 \, {\left (x^{2} e^{10} + 6 \, x e^{10}\right )} e^{\left (2 \, x\right )} + {\left (x^{2} e^{5} + 12 \, x e^{5} + 27 \, e^{5}\right )} e^{x}\right )} \log \relax (x)^{2} + {\left ({\left (2 \, x e^{10} + 9 \, e^{10}\right )} e^{\left (2 \, x\right )} - 2 \, x e^{\left (3 \, x + 15\right )}\right )} \log \relax (x) - e^{\left (3 \, x + 15\right )}} + \frac {\log \relax (x)^{3}}{9 \, {\left (x e^{\left (x + 5\right )} - x - 3\right )} \log \relax (x)^{3} - 3 \, {\left (2 \, x e^{\left (2 \, x + 10\right )} - {\left (2 \, x e^{5} + 9 \, e^{5}\right )} e^{x}\right )} \log \relax (x)^{2} - {\left ({\left (x e^{10} + 9 \, e^{10}\right )} e^{\left (2 \, x\right )} - x e^{\left (3 \, x + 15\right )}\right )} \log \relax (x) + e^{\left (3 \, x + 15\right )}} - \frac {\log \relax (x)^{2}}{6 \, x e^{\left (x + 5\right )} \log \relax (x) - 9 \, x \log \relax (x)^{2} - x e^{\left (2 \, x + 10\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.46, size = 94, normalized size = 3.92 \begin {gather*} {\mathrm {e}}^{\frac {1}{9\,x-6\,x^2\,{\mathrm {e}}^{x+5}-2\,x^3\,{\mathrm {e}}^{x+5}+x^3\,{\mathrm {e}}^{2\,x+10}+6\,x^2+x^3+\frac {2\,x^2\,{\mathrm {e}}^{2\,x+10}}{\ln \relax (x)}-\frac {6\,x\,{\mathrm {e}}^{x+5}}{\ln \relax (x)}+\frac {x\,{\mathrm {e}}^{2\,x+10}}{{\ln \relax (x)}^2}-\frac {2\,x^2\,{\mathrm {e}}^{x+5}}{\ln \relax (x)}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 8.05, size = 61, normalized size = 2.54 \begin {gather*} e^{\frac {1}{x^{3} + 6 x^{2} + \frac {x \left (x \log {\relax (x )} + 1\right )^{2} e^{2 x + 10}}{\log {\relax (x )}^{2}} + 9 x + \frac {\left (- 2 x^{2} - 6 x\right ) \left (x \log {\relax (x )} + 1\right ) e^{x + 5}}{\log {\relax (x )}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________