Optimal. Leaf size=29 \[ e^{e^{\frac {1}{2} x \left (x-81 \left (-3+e^{\frac {x}{3+2 x}}\right )^2 x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 46.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\exp \left (\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right )+\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right ) \left (-6552 x-8736 x^2-2912 x^3+e^{\frac {2 x}{3+2 x}} \left (-729 x-1215 x^2-324 x^3\right )+e^{\frac {x}{3+2 x}} \left (4374 x+6561 x^2+1944 x^3\right )\right )}{9+12 x+4 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\exp \left (\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right )+\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right ) \left (-6552 x-8736 x^2-2912 x^3+e^{\frac {2 x}{3+2 x}} \left (-729 x-1215 x^2-324 x^3\right )+e^{\frac {x}{3+2 x}} \left (4374 x+6561 x^2+1944 x^3\right )\right )}{(3+2 x)^2} \, dx\\ &=\int \left (-728 \exp \left (\exp \left (\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right )+\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right ) x-\frac {81 \exp \left (\exp \left (\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right )+\frac {2 x}{3+2 x}+\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right ) x (3+x) (3+4 x)}{(3+2 x)^2}+\frac {243 \exp \left (\exp \left (\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right )+\frac {x}{3+2 x}+\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right ) x \left (18+27 x+8 x^2\right )}{(3+2 x)^2}\right ) \, dx\\ &=-\left (81 \int \frac {\exp \left (\exp \left (\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right )+\frac {2 x}{3+2 x}+\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right ) x (3+x) (3+4 x)}{(3+2 x)^2} \, dx\right )+243 \int \frac {\exp \left (\exp \left (\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right )+\frac {x}{3+2 x}+\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right ) x \left (18+27 x+8 x^2\right )}{(3+2 x)^2} \, dx-728 \int \exp \left (\exp \left (\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right )+\frac {1}{2} \left (-728 x^2+486 e^{\frac {x}{3+2 x}} x^2-81 e^{\frac {2 x}{3+2 x}} x^2\right )\right ) x \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 40, normalized size = 1.38 \begin {gather*} e^{e^{-\frac {1}{2} \left (728-486 e^{\frac {x}{3+2 x}}+81 e^{\frac {2 x}{3+2 x}}\right ) x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 39, normalized size = 1.34 \begin {gather*} e^{\left (e^{\left (-\frac {81}{2} \, x^{2} e^{\left (\frac {2 \, x}{2 \, x + 3}\right )} + 243 \, x^{2} e^{\left (\frac {x}{2 \, x + 3}\right )} - 364 \, x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2912 \, x^{3} + 8736 \, x^{2} + 81 \, {\left (4 \, x^{3} + 15 \, x^{2} + 9 \, x\right )} e^{\left (\frac {2 \, x}{2 \, x + 3}\right )} - 243 \, {\left (8 \, x^{3} + 27 \, x^{2} + 18 \, x\right )} e^{\left (\frac {x}{2 \, x + 3}\right )} + 6552 \, x\right )} e^{\left (-\frac {81}{2} \, x^{2} e^{\left (\frac {2 \, x}{2 \, x + 3}\right )} + 243 \, x^{2} e^{\left (\frac {x}{2 \, x + 3}\right )} - 364 \, x^{2} + e^{\left (-\frac {81}{2} \, x^{2} e^{\left (\frac {2 \, x}{2 \, x + 3}\right )} + 243 \, x^{2} e^{\left (\frac {x}{2 \, x + 3}\right )} - 364 \, x^{2}\right )}\right )}}{4 \, x^{2} + 12 \, x + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 35, normalized size = 1.21
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {x^{2} \left (-81 \,{\mathrm e}^{\frac {2 x}{2 x +3}}+486 \,{\mathrm e}^{\frac {x}{2 x +3}}-728\right )}{2}}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 42, normalized size = 1.45 \begin {gather*} e^{\left (e^{\left (243 \, x^{2} e^{\left (-\frac {3}{2 \, {\left (2 \, x + 3\right )}} + \frac {1}{2}\right )} - \frac {81}{2} \, x^{2} e^{\left (-\frac {3}{2 \, x + 3} + 1\right )} - 364 \, x^{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.87, size = 41, normalized size = 1.41 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-\frac {81\,x^2\,{\mathrm {e}}^{\frac {2\,x}{2\,x+3}}}{2}}\,{\mathrm {e}}^{243\,x^2\,{\mathrm {e}}^{\frac {x}{2\,x+3}}}\,{\mathrm {e}}^{-364\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.62, size = 37, normalized size = 1.28 \begin {gather*} e^{e^{- \frac {81 x^{2} e^{\frac {2 x}{2 x + 3}}}{2} + 243 x^{2} e^{\frac {x}{2 x + 3}} - 364 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________