Optimal. Leaf size=15 \[ \frac {-4+x+4 \left (e^3+x\right )}{\log ^2(x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 21, normalized size of antiderivative = 1.40, number of steps used = 12, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {6741, 6742, 2353, 2297, 2298, 2302, 30} \begin {gather*} \frac {5 x}{\log ^2(x)}-\frac {4 \left (1-e^3\right )}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \left (1-e^3\right )-10 x+5 x \log (x)}{x \log ^3(x)} \, dx\\ &=\int \left (-\frac {2 \left (-4+4 e^3+5 x\right )}{x \log ^3(x)}+\frac {5}{\log ^2(x)}\right ) \, dx\\ &=-\left (2 \int \frac {-4+4 e^3+5 x}{x \log ^3(x)} \, dx\right )+5 \int \frac {1}{\log ^2(x)} \, dx\\ &=-\frac {5 x}{\log (x)}-2 \int \left (\frac {5}{\log ^3(x)}+\frac {4 \left (-1+e^3\right )}{x \log ^3(x)}\right ) \, dx+5 \int \frac {1}{\log (x)} \, dx\\ &=-\frac {5 x}{\log (x)}+5 \text {li}(x)-10 \int \frac {1}{\log ^3(x)} \, dx+\left (8 \left (1-e^3\right )\right ) \int \frac {1}{x \log ^3(x)} \, dx\\ &=\frac {5 x}{\log ^2(x)}-\frac {5 x}{\log (x)}+5 \text {li}(x)-5 \int \frac {1}{\log ^2(x)} \, dx+\left (8 \left (1-e^3\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log (x)\right )\\ &=-\frac {4 \left (1-e^3\right )}{\log ^2(x)}+\frac {5 x}{\log ^2(x)}+5 \text {li}(x)-5 \int \frac {1}{\log (x)} \, dx\\ &=-\frac {4 \left (1-e^3\right )}{\log ^2(x)}+\frac {5 x}{\log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.03, size = 44, normalized size = 2.93 \begin {gather*} -\frac {4}{\log ^2(x)}+\frac {4 e^3}{\log ^2(x)}-\frac {5 x}{\log (x)}-5 \left (\text {Ei}(\log (x))-\frac {x (1+\log (x))}{\log ^2(x)}\right )+5 \text {li}(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.31, size = 14, normalized size = 0.93 \begin {gather*} \frac {5 \, x + 4 \, e^{3} - 4}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 14, normalized size = 0.93 \begin {gather*} \frac {5 \, x + 4 \, e^{3} - 4}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 1.00
method | result | size |
norman | \(\frac {4 \,{\mathrm e}^{3}+5 x -4}{\ln \relax (x )^{2}}\) | \(15\) |
risch | \(\frac {4 \,{\mathrm e}^{3}+5 x -4}{\ln \relax (x )^{2}}\) | \(15\) |
default | \(\frac {4 \,{\mathrm e}^{3}}{\ln \relax (x )^{2}}+\frac {5 x}{\ln \relax (x )^{2}}-\frac {4}{\ln \relax (x )^{2}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.36, size = 31, normalized size = 2.07 \begin {gather*} \frac {4 \, e^{3}}{\log \relax (x)^{2}} - \frac {4}{\log \relax (x)^{2}} + 5 \, \Gamma \left (-1, -\log \relax (x)\right ) + 10 \, \Gamma \left (-2, -\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.27, size = 14, normalized size = 0.93 \begin {gather*} \frac {5\,x+4\,{\mathrm {e}}^3-4}{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.93 \begin {gather*} \frac {5 x - 4 + 4 e^{3}}{\log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________