Optimal. Leaf size=18 \[ 2 \log (x) \left (x \left (1-e^x \log (2)\right )+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 22, normalized size of antiderivative = 1.22, number of steps used = 8, number of rules used = 5, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {14, 2288, 2346, 2301, 2295} \begin {gather*} 2 \log ^2(x)+2 x \log (x)-2 e^x x \log (2) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rule 2295
Rule 2301
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^x \log (2) (1+\log (x)+x \log (x))+\frac {2 (x+2 \log (x)+x \log (x))}{x}\right ) \, dx\\ &=2 \int \frac {x+2 \log (x)+x \log (x)}{x} \, dx-(2 \log (2)) \int e^x (1+\log (x)+x \log (x)) \, dx\\ &=-2 e^x x \log (2) \log (x)+2 \int \left (1+\frac {(2+x) \log (x)}{x}\right ) \, dx\\ &=2 x-2 e^x x \log (2) \log (x)+2 \int \frac {(2+x) \log (x)}{x} \, dx\\ &=2 x-2 e^x x \log (2) \log (x)+2 \int \log (x) \, dx+4 \int \frac {\log (x)}{x} \, dx\\ &=2 x \log (x)-2 e^x x \log (2) \log (x)+2 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 16, normalized size = 0.89 \begin {gather*} 2 \log (x) \left (x-e^x x \log (2)+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 21, normalized size = 1.17 \begin {gather*} -2 \, {\left (x e^{x} \log \relax (2) - x\right )} \log \relax (x) + 2 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 21, normalized size = 1.17 \begin {gather*} -2 \, x e^{x} \log \relax (2) \log \relax (x) + 2 \, x \log \relax (x) + 2 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 1.22
method | result | size |
default | \(-2 x \ln \relax (2) {\mathrm e}^{x} \ln \relax (x )+2 \ln \relax (x )^{2}+2 x \ln \relax (x )\) | \(22\) |
norman | \(-2 x \ln \relax (2) {\mathrm e}^{x} \ln \relax (x )+2 \ln \relax (x )^{2}+2 x \ln \relax (x )\) | \(22\) |
risch | \(2 \ln \relax (x )^{2}+\left (-2 x \ln \relax (2) {\mathrm e}^{x}+2 x \right ) \ln \relax (x )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, e^{x} \log \relax (2) \log \relax (x) - 2 \, {\left ({\left (x - 1\right )} e^{x} \log \relax (x) - \int \frac {{\left (x - 1\right )} e^{x}}{x}\,{d x}\right )} \log \relax (2) + 2 \, {\rm Ei}\relax (x) \log \relax (2) - 2 \, e^{x} \log \relax (2) + 2 \, x \log \relax (x) + 2 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.95, size = 15, normalized size = 0.83 \begin {gather*} 2\,\ln \relax (x)\,\left (x+\ln \relax (x)-x\,{\mathrm {e}}^x\,\ln \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 26, normalized size = 1.44 \begin {gather*} - 2 x e^{x} \log {\relax (2 )} \log {\relax (x )} + 2 x \log {\relax (x )} + 2 \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________