Optimal. Leaf size=24 \[ \frac {2 \left (1+x-3 x^2 \left (x+\frac {3}{e^5+x}\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 23, normalized size of antiderivative = 0.96, number of steps used = 4, number of rules used = 3, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {1594, 27, 1620} \begin {gather*} -6 x^2+\frac {18 e^5}{x+e^5}+\frac {2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x^2-12 x^5+e^{10} \left (-2-12 x^3\right )+e^5 \left (-4 x-18 x^2-24 x^4\right )}{x^2 \left (e^{10}+2 e^5 x+x^2\right )} \, dx\\ &=\int \frac {-2 x^2-12 x^5+e^{10} \left (-2-12 x^3\right )+e^5 \left (-4 x-18 x^2-24 x^4\right )}{x^2 \left (e^5+x\right )^2} \, dx\\ &=\int \left (-\frac {2}{x^2}-12 x-\frac {18 e^5}{\left (e^5+x\right )^2}\right ) \, dx\\ &=\frac {2}{x}-6 x^2+\frac {18 e^5}{e^5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.04 \begin {gather*} -2 \left (-\frac {1}{x}+3 x^2-\frac {9 e^5}{e^5+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 34, normalized size = 1.42 \begin {gather*} -\frac {2 \, {\left (3 \, x^{4} + {\left (3 \, x^{3} - 9 \, x - 1\right )} e^{5} - x\right )}}{x^{2} + x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 30, normalized size = 1.25
method | result | size |
risch | \(-6 x^{2}+\frac {\left (18 \,{\mathrm e}^{5}+2\right ) x +2 \,{\mathrm e}^{5}}{\left ({\mathrm e}^{5}+x \right ) x}\) | \(30\) |
norman | \(\frac {\left (18 \,{\mathrm e}^{5}+2\right ) x -6 x^{4}-6 x^{3} {\mathrm e}^{5}+2 \,{\mathrm e}^{5}}{\left ({\mathrm e}^{5}+x \right ) x}\) | \(36\) |
gosper | \(-\frac {2 \left (3 x^{3} {\mathrm e}^{5}+3 x^{4}-9 x \,{\mathrm e}^{5}-{\mathrm e}^{5}-x \right )}{x \left ({\mathrm e}^{5}+x \right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 29, normalized size = 1.21 \begin {gather*} -6 \, x^{2} + \frac {2 \, {\left (x {\left (9 \, e^{5} + 1\right )} + e^{5}\right )}}{x^{2} + x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 29, normalized size = 1.21 \begin {gather*} \frac {2\,{\mathrm {e}}^5+x\,\left (18\,{\mathrm {e}}^5+2\right )}{x\,\left (x+{\mathrm {e}}^5\right )}-6\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 29, normalized size = 1.21 \begin {gather*} - 6 x^{2} - \frac {x \left (- 18 e^{5} - 2\right ) - 2 e^{5}}{x^{2} + x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________