Optimal. Leaf size=28 \[ 4+e^{-\frac {-3+x^2}{(6-2 x)^2+\frac {1}{e^3 x}}} \]
________________________________________________________________________________________
Rubi [F] time = 2.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-\frac {e^3 \left (-3 x+x^3\right )}{1+e^3 \left (36 x-24 x^2+4 x^3\right )}\right ) \left (e^3 \left (3-3 x^2\right )+e^6 \left (72 x^2-96 x^3+24 x^4\right )\right )}{1+e^3 \left (72 x-48 x^2+8 x^3\right )+e^6 \left (1296 x^2-1728 x^3+864 x^4-192 x^5+16 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) \left (3 e^3-3 e^3 \left (1-24 e^3\right ) x^2-96 e^6 x^3+24 e^6 x^4\right )}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2} \, dx\\ &=\int \left (\frac {3 \exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) \left (-3-2 \left (1+72 e^3\right ) x-\left (1-48 e^3\right ) x^2\right )}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2}+\frac {6 \exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) (2+x)}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) \, dx\\ &=3 \int \frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) \left (-3-2 \left (1+72 e^3\right ) x-\left (1-48 e^3\right ) x^2\right )}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2} \, dx+6 \int \frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) (2+x)}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3} \, dx\\ &=3 \int \left (-\frac {3 \exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right )}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2}-\frac {2 \exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) \left (1+72 e^3\right ) x}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2}+\frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) \left (-1+48 e^3\right ) x^2}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2}\right ) \, dx+6 \int \left (\frac {2 \exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}+\frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) x}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) \, dx\\ &=6 \int \frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) x}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3} \, dx-9 \int \frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right )}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2} \, dx+12 \int \frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3} \, dx-\left (3 \left (1-48 e^3\right )\right ) \int \frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) x^2}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2} \, dx-\left (6 \left (1+72 e^3\right )\right ) \int \frac {\exp \left (3-\frac {e^3 x \left (-3+x^2\right )}{1+36 e^3 x-24 e^3 x^2+4 e^3 x^3}\right ) x}{\left (1+36 e^3 x-24 e^3 x^2+4 e^3 x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.75, size = 28, normalized size = 1.00 \begin {gather*} e^{-\frac {e^3 x \left (-3+x^2\right )}{1+4 e^3 (-3+x)^2 x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 32, normalized size = 1.14 \begin {gather*} e^{\left (-\frac {{\left (x^{3} - 3 \, x\right )} e^{3}}{4 \, {\left (x^{3} - 6 \, x^{2} + 9 \, x\right )} e^{3} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 \, {\left (8 \, {\left (x^{4} - 4 \, x^{3} + 3 \, x^{2}\right )} e^{6} - {\left (x^{2} - 1\right )} e^{3}\right )} e^{\left (-\frac {{\left (x^{3} - 3 \, x\right )} e^{3}}{4 \, {\left (x^{3} - 6 \, x^{2} + 9 \, x\right )} e^{3} + 1}\right )}}{16 \, {\left (x^{6} - 12 \, x^{5} + 54 \, x^{4} - 108 \, x^{3} + 81 \, x^{2}\right )} e^{6} + 8 \, {\left (x^{3} - 6 \, x^{2} + 9 \, x\right )} e^{3} + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 35, normalized size = 1.25
method | result | size |
norman | \({\mathrm e}^{-\frac {\left (x^{3}-3 x \right ) {\mathrm e}^{3}}{\left (4 x^{3}-24 x^{2}+36 x \right ) {\mathrm e}^{3}+1}}\) | \(35\) |
risch | \({\mathrm e}^{-\frac {x \left (x^{2}-3\right ) {\mathrm e}^{3}}{4 x^{3} {\mathrm e}^{3}-24 x^{2} {\mathrm e}^{3}+36 x \,{\mathrm e}^{3}+1}}\) | \(35\) |
gosper | \({\mathrm e}^{-\frac {x \left (x^{2}-3\right ) {\mathrm e}^{3}}{4 x^{3} {\mathrm e}^{3}-24 x^{2} {\mathrm e}^{3}+36 x \,{\mathrm e}^{3}+1}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.38, size = 86, normalized size = 3.07 \begin {gather*} e^{\left (-\frac {6 \, x^{2} e^{3}}{4 \, x^{3} e^{3} - 24 \, x^{2} e^{3} + 36 \, x e^{3} + 1} + \frac {12 \, x e^{3}}{4 \, x^{3} e^{3} - 24 \, x^{2} e^{3} + 36 \, x e^{3} + 1} + \frac {1}{4 \, {\left (4 \, x^{3} e^{3} - 24 \, x^{2} e^{3} + 36 \, x e^{3} + 1\right )}} - \frac {1}{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.75, size = 38, normalized size = 1.36 \begin {gather*} {\mathrm {e}}^{\frac {3\,x\,{\mathrm {e}}^3-x^3\,{\mathrm {e}}^3}{4\,{\mathrm {e}}^3\,x^3-24\,{\mathrm {e}}^3\,x^2+36\,{\mathrm {e}}^3\,x+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.50, size = 31, normalized size = 1.11 \begin {gather*} e^{- \frac {\left (x^{3} - 3 x\right ) e^{3}}{\left (4 x^{3} - 24 x^{2} + 36 x\right ) e^{3} + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________