Optimal. Leaf size=27 \[ -1+x \left (\frac {3}{2}+x-\frac {x \left (5+x^2\right )^4}{-x+\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1250 x+1253 x^2+1004 x^3+3000 x^4+300 x^5+1500 x^6+40 x^7+280 x^8+2 x^9+18 x^{10}+\left (-2506 x-8 x^2-4000 x^3-1800 x^5-320 x^7-20 x^9\right ) \log (x)+(3+4 x) \log ^2(x)}{2 x^2-4 x \log (x)+2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1250 x+1253 x^2+1004 x^3+3000 x^4+300 x^5+1500 x^6+40 x^7+280 x^8+2 x^9+18 x^{10}+\left (-2506 x-8 x^2-4000 x^3-1800 x^5-320 x^7-20 x^9\right ) \log (x)+(3+4 x) \log ^2(x)}{2 (x-\log (x))^2} \, dx\\ &=\frac {1}{2} \int \frac {1250 x+1253 x^2+1004 x^3+3000 x^4+300 x^5+1500 x^6+40 x^7+280 x^8+2 x^9+18 x^{10}+\left (-2506 x-8 x^2-4000 x^3-1800 x^5-320 x^7-20 x^9\right ) \log (x)+(3+4 x) \log ^2(x)}{(x-\log (x))^2} \, dx\\ &=\frac {1}{2} \int \left (3+4 x-\frac {2 (-1+x) x \left (5+x^2\right )^4}{(x-\log (x))^2}+\frac {20 x \left (1+x^2\right ) \left (5+x^2\right )^3}{x-\log (x)}\right ) \, dx\\ &=\frac {3 x}{2}+x^2+10 \int \frac {x \left (1+x^2\right ) \left (5+x^2\right )^3}{x-\log (x)} \, dx-\int \frac {(-1+x) x \left (5+x^2\right )^4}{(x-\log (x))^2} \, dx\\ &=\frac {3 x}{2}+x^2+10 \int \left (\frac {125 x}{x-\log (x)}+\frac {200 x^3}{x-\log (x)}+\frac {90 x^5}{x-\log (x)}+\frac {16 x^7}{x-\log (x)}+\frac {x^9}{x-\log (x)}\right ) \, dx-\int \left (-\frac {625 x}{(x-\log (x))^2}+\frac {625 x^2}{(x-\log (x))^2}-\frac {500 x^3}{(x-\log (x))^2}+\frac {500 x^4}{(x-\log (x))^2}-\frac {150 x^5}{(x-\log (x))^2}+\frac {150 x^6}{(x-\log (x))^2}-\frac {20 x^7}{(x-\log (x))^2}+\frac {20 x^8}{(x-\log (x))^2}-\frac {x^9}{(x-\log (x))^2}+\frac {x^{10}}{(x-\log (x))^2}\right ) \, dx\\ &=\frac {3 x}{2}+x^2+10 \int \frac {x^9}{x-\log (x)} \, dx+20 \int \frac {x^7}{(x-\log (x))^2} \, dx-20 \int \frac {x^8}{(x-\log (x))^2} \, dx+150 \int \frac {x^5}{(x-\log (x))^2} \, dx-150 \int \frac {x^6}{(x-\log (x))^2} \, dx+160 \int \frac {x^7}{x-\log (x)} \, dx+500 \int \frac {x^3}{(x-\log (x))^2} \, dx-500 \int \frac {x^4}{(x-\log (x))^2} \, dx+625 \int \frac {x}{(x-\log (x))^2} \, dx-625 \int \frac {x^2}{(x-\log (x))^2} \, dx+900 \int \frac {x^5}{x-\log (x)} \, dx+1250 \int \frac {x}{x-\log (x)} \, dx+2000 \int \frac {x^3}{x-\log (x)} \, dx+\int \frac {x^9}{(x-\log (x))^2} \, dx-\int \frac {x^{10}}{(x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 28, normalized size = 1.04 \begin {gather*} \frac {1}{2} x \left (3+2 x+\frac {2 x \left (5+x^2\right )^4}{x-\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 54, normalized size = 2.00 \begin {gather*} \frac {2 \, x^{10} + 40 \, x^{8} + 300 \, x^{6} + 1000 \, x^{4} + 2 \, x^{3} + 1253 \, x^{2} - {\left (2 \, x^{2} + 3 \, x\right )} \log \relax (x)}{2 \, {\left (x - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 40, normalized size = 1.48 \begin {gather*} x^{2} + \frac {3}{2} \, x + \frac {x^{10} + 20 \, x^{8} + 150 \, x^{6} + 500 \, x^{4} + 625 \, x^{2}}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 40, normalized size = 1.48
method | result | size |
risch | \(x^{2}+\frac {3 x}{2}+\frac {\left (x^{8}+20 x^{6}+150 x^{4}+500 x^{2}+625\right ) x^{2}}{x -\ln \relax (x )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 54, normalized size = 2.00 \begin {gather*} \frac {2 \, x^{10} + 40 \, x^{8} + 300 \, x^{6} + 1000 \, x^{4} + 2 \, x^{3} + 1253 \, x^{2} - {\left (2 \, x^{2} + 3 \, x\right )} \log \relax (x)}{2 \, {\left (x - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.84, size = 61, normalized size = 2.26 \begin {gather*} \frac {x\,\left (2\,x+3\right )}{2}+\frac {\frac {x\,\left (2\,x^9+40\,x^7+300\,x^5+1000\,x^3+2\,x^2+1253\,x\right )}{2}-\frac {x^2\,\left (2\,x+3\right )}{2}}{x-\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 37, normalized size = 1.37 \begin {gather*} x^{2} + \frac {3 x}{2} + \frac {- x^{10} - 20 x^{8} - 150 x^{6} - 500 x^{4} - 625 x^{2}}{- x + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________