Optimal. Leaf size=25 \[ \left (5-e^{x^2}\right ) x \left (x-3 \left (-\frac {1}{e}+e^3+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 46, normalized size of antiderivative = 1.84, number of steps used = 10, number of rules used = 5, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 2226, 2204, 2209, 2212} \begin {gather*} 2 e^{x^2} x^2-10 x^2-3 \left (1-e^4\right ) e^{x^2-1} x+\frac {15 \left (1-e^4\right ) x}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2204
Rule 2209
Rule 2212
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (15-15 e^4-20 e x+e^{x^2} \left (-3-6 x^2+e^4 \left (3+6 x^2\right )+e \left (4 x+4 x^3\right )\right )\right ) \, dx}{e}\\ &=\frac {15 \left (1-e^4\right ) x}{e}-10 x^2+\frac {\int e^{x^2} \left (-3-6 x^2+e^4 \left (3+6 x^2\right )+e \left (4 x+4 x^3\right )\right ) \, dx}{e}\\ &=\frac {15 \left (1-e^4\right ) x}{e}-10 x^2+\frac {\int \left (3 e^{x^2} \left (-1+e^4\right )+4 e^{1+x^2} x+6 e^{x^2} \left (-1+e^4\right ) x^2+4 e^{1+x^2} x^3\right ) \, dx}{e}\\ &=\frac {15 \left (1-e^4\right ) x}{e}-10 x^2+\frac {4 \int e^{1+x^2} x \, dx}{e}+\frac {4 \int e^{1+x^2} x^3 \, dx}{e}-\frac {\left (3 \left (1-e^4\right )\right ) \int e^{x^2} \, dx}{e}-\frac {\left (6 \left (1-e^4\right )\right ) \int e^{x^2} x^2 \, dx}{e}\\ &=2 e^{x^2}+\frac {15 \left (1-e^4\right ) x}{e}-3 e^{-1+x^2} \left (1-e^4\right ) x-10 x^2+2 e^{x^2} x^2-\frac {3 \left (1-e^4\right ) \sqrt {\pi } \text {erfi}(x)}{2 e}-\frac {4 \int e^{1+x^2} x \, dx}{e}+\frac {\left (3 \left (1-e^4\right )\right ) \int e^{x^2} \, dx}{e}\\ &=\frac {15 \left (1-e^4\right ) x}{e}-3 e^{-1+x^2} \left (1-e^4\right ) x-10 x^2+2 e^{x^2} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 23, normalized size = 0.92 \begin {gather*} \frac {\left (-5+e^{x^2}\right ) x \left (-3+3 e^4+2 e x\right )}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 42, normalized size = 1.68 \begin {gather*} -{\left (10 \, x^{2} e + 15 \, x e^{4} - {\left (2 \, x^{2} e + 3 \, x e^{4} - 3 \, x\right )} e^{\left (x^{2}\right )} - 15 \, x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 47, normalized size = 1.88 \begin {gather*} -{\left (10 \, x^{2} e - 2 \, x^{2} e^{\left (x^{2} + 1\right )} + 15 \, x e^{4} - 3 \, x e^{\left (x^{2} + 4\right )} + 3 \, x e^{\left (x^{2}\right )} - 15 \, x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 42, normalized size = 1.68
method | result | size |
risch | \(-15 x \,{\mathrm e}^{3}-10 x^{2}+15 \,{\mathrm e}^{-1} x +\left (3 x \,{\mathrm e}^{4}+2 x^{2} {\mathrm e}-3 x \right ) {\mathrm e}^{\left (x -1\right ) \left (x +1\right )}\) | \(42\) |
norman | \(-10 x^{2}+2 x^{2} {\mathrm e}^{x^{2}}-15 \left ({\mathrm e} \,{\mathrm e}^{3}-1\right ) {\mathrm e}^{-1} x +3 \left ({\mathrm e} \,{\mathrm e}^{3}-1\right ) {\mathrm e}^{-1} x \,{\mathrm e}^{x^{2}}\) | \(48\) |
default | \({\mathrm e}^{-1} \left (15 x -3 \,{\mathrm e}^{x^{2}} x +2 \,{\mathrm e} \,{\mathrm e}^{x^{2}}+4 \,{\mathrm e} \left (\frac {x^{2} {\mathrm e}^{x^{2}}}{2}-\frac {{\mathrm e}^{x^{2}}}{2}\right )+\frac {3 \,{\mathrm e} \,{\mathrm e}^{3} \sqrt {\pi }\, \erfi \relax (x )}{2}+6 \,{\mathrm e} \,{\mathrm e}^{3} \left (\frac {{\mathrm e}^{x^{2}} x}{2}-\frac {\sqrt {\pi }\, \erfi \relax (x )}{4}\right )-10 x^{2} {\mathrm e}-15 x \,{\mathrm e} \,{\mathrm e}^{3}\right )\) | \(91\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.59, size = 41, normalized size = 1.64 \begin {gather*} -{\left (10 \, x^{2} e + 15 \, x e^{4} - {\left (2 \, x^{2} e + 3 \, x {\left (e^{4} - 1\right )}\right )} e^{\left (x^{2}\right )} - 15 \, x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 21, normalized size = 0.84 \begin {gather*} x\,{\mathrm {e}}^{-1}\,\left ({\mathrm {e}}^{x^2}-5\right )\,\left (3\,{\mathrm {e}}^4+2\,x\,\mathrm {e}-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 42, normalized size = 1.68 \begin {gather*} - 10 x^{2} + \frac {x \left (15 - 15 e^{4}\right )}{e} + \frac {\left (2 e x^{2} - 3 x + 3 x e^{4}\right ) e^{x^{2}}}{e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________