Optimal. Leaf size=30 \[ x-e^{e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}} x \]
________________________________________________________________________________________
Rubi [F] time = 5.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x+\log (\log (5))+\exp \left (e^{e^{3+e^x}+\log ^2\left (\frac {-x+\log (\log (5))}{\log (\log (5))}\right )}\right ) \left (x-\log (\log (5))+e^{e^{3+e^x}+\log ^2\left (\frac {-x+\log (\log (5))}{\log (\log (5))}\right )} \left (e^{3+e^x} \left (e^x x^2-e^x x \log (\log (5))\right )+2 x \log \left (\frac {-x+\log (\log (5))}{\log (\log (5))}\right )\right )\right )}{-x+\log (\log (5))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-e^{e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}}-\frac {\exp \left (e^{3+e^x}+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) x \left (e^{3+e^x+x} x-e^{3+e^x+x} \log (\log (5))+2 \log \left (1-\frac {x}{\log (\log (5))}\right )\right )}{x-\log (\log (5))}\right ) \, dx\\ &=x-\int e^{e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}} \, dx-\int \frac {\exp \left (e^{3+e^x}+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) x \left (e^{3+e^x+x} x-e^{3+e^x+x} \log (\log (5))+2 \log \left (1-\frac {x}{\log (\log (5))}\right )\right )}{x-\log (\log (5))} \, dx\\ &=x-\int e^{e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}} \, dx-\int \left (\exp \left (3+e^{3+e^x}+e^x+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+x+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) x+\frac {2 \exp \left (e^{3+e^x}+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) x \log \left (1-\frac {x}{\log (\log (5))}\right )}{x-\log (\log (5))}\right ) \, dx\\ &=x-2 \int \frac {\exp \left (e^{3+e^x}+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) x \log \left (1-\frac {x}{\log (\log (5))}\right )}{x-\log (\log (5))} \, dx-\int e^{e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}} \, dx-\int \exp \left (3+e^{3+e^x}+e^x+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+x+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) x \, dx\\ &=x-2 \int \left (\exp \left (e^{3+e^x}+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) \log \left (1-\frac {x}{\log (\log (5))}\right )+\frac {\exp \left (e^{3+e^x}+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) \log (\log (5)) \log \left (1-\frac {x}{\log (\log (5))}\right )}{x-\log (\log (5))}\right ) \, dx-\int e^{e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}} \, dx-\int \exp \left (3+e^{3+e^x}+e^x+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+x+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) x \, dx\\ &=x-2 \int \exp \left (e^{3+e^x}+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) \log \left (1-\frac {x}{\log (\log (5))}\right ) \, dx-(2 \log (\log (5))) \int \frac {\exp \left (e^{3+e^x}+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) \log \left (1-\frac {x}{\log (\log (5))}\right )}{x-\log (\log (5))} \, dx-\int e^{e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}} \, dx-\int \exp \left (3+e^{3+e^x}+e^x+e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}+x+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 30, normalized size = 1.00 \begin {gather*} x-e^{e^{e^{3+e^x}+\log ^2\left (1-\frac {x}{\log (\log (5))}\right )}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 30, normalized size = 1.00 \begin {gather*} -x e^{\left (e^{\left (\log \left (-\frac {x - \log \left (\log \relax (5)\right )}{\log \left (\log \relax (5)\right )}\right )^{2} + e^{\left (e^{x} + 3\right )}\right )}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 30, normalized size = 1.00
method | result | size |
risch | \(-{\mathrm e}^{{\mathrm e}^{\ln \left (\frac {\ln \left (\ln \relax (5)\right )-x}{\ln \left (\ln \relax (5)\right )}\right )^{2}+{\mathrm e}^{3+{\mathrm e}^{x}}}} x +x\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \int \frac {{\left ({\left (2 \, x e^{\left (\log \left (\log \left (\log \relax (5)\right )\right )^{2}\right )} \log \left (-x + \log \left (\log \relax (5)\right )\right ) - 2 \, x e^{\left (\log \left (\log \left (\log \relax (5)\right )\right )^{2}\right )} \log \left (\log \left (\log \relax (5)\right )\right ) + {\left (x^{2} e^{\left (\log \left (\log \left (\log \relax (5)\right )\right )^{2} + 3\right )} - x e^{\left (\log \left (\log \left (\log \relax (5)\right )\right )^{2} + 3\right )} \log \left (\log \relax (5)\right )\right )} e^{\left (x + e^{x}\right )}\right )} e^{\left (\log \left (-x + \log \left (\log \relax (5)\right )\right )^{2} + e^{\left (e^{x} + 3\right )}\right )} + {\left (x - \log \left (\log \relax (5)\right )\right )} e^{\left (2 \, \log \left (-x + \log \left (\log \relax (5)\right )\right ) \log \left (\log \left (\log \relax (5)\right )\right )\right )}\right )} e^{\left (-2 \, \log \left (-x + \log \left (\log \relax (5)\right )\right ) \log \left (\log \left (\log \relax (5)\right )\right ) + e^{\left (\log \left (-x + \log \left (\log \relax (5)\right )\right )^{2} - 2 \, \log \left (-x + \log \left (\log \relax (5)\right )\right ) \log \left (\log \left (\log \relax (5)\right )\right ) + \log \left (\log \left (\log \relax (5)\right )\right )^{2} + e^{\left (e^{x} + 3\right )}\right )}\right )}}{x - \log \left (\log \relax (5)\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.42, size = 48, normalized size = 1.60 \begin {gather*} -x\,\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^{{\ln \left (\ln \left (\ln \relax (5)\right )\right )}^2}\,{\mathrm {e}}^{{\ln \left (\ln \left (\ln \relax (5)\right )-x\right )}^2}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^3}}{{\left (\ln \left (\ln \relax (5)\right )-x\right )}^{2\,\ln \left (\ln \left (\ln \relax (5)\right )\right )}}}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________