Optimal. Leaf size=33 \[ -2 x+x^2+\frac {5}{(4-x) \log (3)+\left (x-x^2-\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 5.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x-20 x^2+30 x^3-20 x^4-2 x^5+10 x^6-20 x^7+20 x^8-10 x^9+2 x^{10}+\left (5 x-16 x^3+52 x^4-60 x^5+28 x^6-4 x^7\right ) \log (3)+\left (-32 x+48 x^2-18 x^3+2 x^4\right ) \log ^2(3)+\left (-10+10 x-20 x^2+8 x^4-32 x^5+48 x^6-32 x^7+8 x^8+\left (32 x^2-72 x^3+48 x^4-8 x^5\right ) \log (3)\right ) \log (x)+\left (-12 x^3+36 x^4-36 x^5+12 x^6+\left (-16 x+20 x^2-4 x^3\right ) \log (3)\right ) \log ^2(x)+\left (8 x^2-16 x^3+8 x^4\right ) \log ^3(x)+\left (-2 x+2 x^2\right ) \log ^4(x)}{x^5-4 x^6+6 x^7-4 x^8+x^9+\left (8 x^3-18 x^4+12 x^5-2 x^6\right ) \log (3)+\left (16 x-8 x^2+x^3\right ) \log ^2(3)+\left (-4 x^4+12 x^5-12 x^6+4 x^7+\left (-16 x^2+20 x^3-4 x^4\right ) \log (3)\right ) \log (x)+\left (6 x^3-12 x^4+6 x^5+\left (8 x-2 x^2\right ) \log (3)\right ) \log ^2(x)+\left (-4 x^2+4 x^3\right ) \log ^3(x)+x \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (10+20 x^7-10 x^8+2 x^9-32 \log ^2(3)-4 x^6 (5+\log (3))+2 x^5 (5+14 \log (3))-2 x^4 (1+30 \log (3))+2 x^3 \left (-10+26 \log (3)+\log ^2(3)\right )-2 x^2 \left (-15+8 \log (3)+9 \log ^2(3)\right )+4 x \left (-5+12 \log ^2(3)\right )+\log (243)\right )+2 \left (-5+5 x+24 x^6-16 x^7+4 x^8-36 x^3 \log (3)-4 x^5 (4+\log (3))+2 x^2 (-5+8 \log (3))+4 x^4 (1+\log (729))\right ) \log (x)+4 (-1+x) x \left (3 x^2-6 x^3+3 x^4-x \log (3)+\log (81)\right ) \log ^2(x)+8 (-1+x)^2 x^2 \log ^3(x)+2 (-1+x) x \log ^4(x)}{x \left (x^2-2 x^3+x^4-x \log (3)+\log (81)+2 (-1+x) x \log (x)+\log ^2(x)\right )^2} \, dx\\ &=\int \left (2 (-1+x)+\frac {-20 x^4+30 x^3 \left (1+\frac {1}{30} \left (-16 \log ^2(3)+\log ^2(81)\right )\right )-20 x^2 \left (1+\frac {3}{20} \left (-16 \log ^2(3)+\log ^2(81)\right )\right )+10 x \left (1+\frac {1}{10} \left (-32 \log ^2(3)+2 \log ^2(81)+\log (243)\right )\right )-10 \log (x)+10 x \log (x)-20 x^2 \log (x)}{x \left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2}\right ) \, dx\\ &=(-1+x)^2+\int \frac {-20 x^4+30 x^3 \left (1+\frac {1}{30} \left (-16 \log ^2(3)+\log ^2(81)\right )\right )-20 x^2 \left (1+\frac {3}{20} \left (-16 \log ^2(3)+\log ^2(81)\right )\right )+10 x \left (1+\frac {1}{10} \left (-32 \log ^2(3)+2 \log ^2(81)+\log (243)\right )\right )-10 \log (x)+10 x \log (x)-20 x^2 \log (x)}{x \left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2} \, dx\\ &=(-1+x)^2+\int \left (-\frac {20 x^3}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2}+\frac {x \left (-20+48 \log ^2(3)-3 \log ^2(81)\right )}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2}-\frac {x^2 \left (-30+16 \log ^2(3)-\log ^2(81)\right )}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2}+\frac {10-32 \log ^2(3)+2 \log ^2(81)+\log (243)}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2}+\frac {10 \log (x)}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2}-\frac {10 \log (x)}{x \left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2}-\frac {20 x \log (x)}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2}\right ) \, dx\\ &=(-1+x)^2+10 \int \frac {\log (x)}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2} \, dx-10 \int \frac {\log (x)}{x \left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2} \, dx-20 \int \frac {x^3}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2} \, dx-20 \int \frac {x \log (x)}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2} \, dx+\left (-20+48 \log ^2(3)-3 \log ^2(81)\right ) \int \frac {x}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2} \, dx+\left (30-16 \log ^2(3)+\log ^2(81)\right ) \int \frac {x^2}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2} \, dx+\left (10-32 \log ^2(3)+2 \log ^2(81)+\log (243)\right ) \int \frac {1}{\left (x^2-2 x^3+x^4-x \log (3)+\log (81)-2 x \log (x)+2 x^2 \log (x)+\log ^2(x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.73, size = 570, normalized size = 17.27 \begin {gather*} \frac {16 x^{11} \log (3)-20 \log (81)+x^3 \left (-48 \log ^3(3)+88 \log (81)+(84+\log (9)) \log ^2(81)+6 \log ^2(3) (28+\log (81))-24 \log (3) (-5+6 \log (81))-4 \log (243)\right )+4 x \left (10 \log (81)+2 \log ^2(81)+\log (243)\right )-x^8 \left (136 \log (3)+17 \log ^2(3)+300 \log (81)-80 \log (729)\right )+4 x^9 (89 \log (3)+38 \log (81)-20 \log (729))+4 x^7 \left (41 \log ^2(3)+\log (3) (-30+\log (81))+86 \log (81)-12 \log (729)\right )+x^4 \left (14 \log ^3(3)-112 \log ^2(81)-\log ^2(3) (228+5 \log (81))+2 \log (3) (-43+50 \log (81))+6 \log (243)+4 \log (81) (-31+4 \log (729))\right )+x^5 \left (258 \log ^2(3)+\log ^3(3)+108 \log ^2(81)-4 \log (243)+4 \log (81) (34-4 \log (729))-4 \log (3) (6+17 \log (81)+4 \log (729))\right )+x^6 \left (-73 \log ^2(3)-8 \left (5 \log ^2(81)+\log (81) (33-4 \log (729))-2 \log (729)\right )-4 \log (3) (53 \log (81)-4 (12+\log (729)))\right )-16 x^{10} \log (19683)+x^2 \left (-64 \log ^2(3)+32 \log ^3(3)-100 \log (81)-(32+\log (9)) \log ^2(81)+\log (3) (-50+48 \log (81)-\log (243))+\log (59049)\right )+2 x^2 \left (2-3 x+x^2\right ) \left (16 x^5 \log (3)-4 \log (81)+9 x \log (81)-x^2 \left (8 \log (3)+\log ^2(3)+20 \log (81)\right )-16 x^4 \log (243)+4 x^3 (4 \log (81)+\log (243))\right ) \log (x)+(-2+x) x \left (16 x^5 \log (3)-4 \log (81)+9 x \log (81)-x^2 \left (8 \log (3)+\log ^2(3)+20 \log (81)\right )-16 x^4 \log (243)+4 x^3 (4 \log (81)+\log (243))\right ) \log ^2(x)}{\left (16 x^5 \log (3)-4 \log (81)+9 x \log (81)-x^2 \left (8 \log (3)+\log ^2(3)+20 \log (81)\right )-16 x^4 \log (243)+4 x^3 (4 \log (81)+\log (243))\right ) \left (x^2-2 x^3+x^4-x \log (3)+\log (81)+2 (-1+x) x \log (x)+\log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 103, normalized size = 3.12 \begin {gather*} \frac {x^{6} - 4 \, x^{5} + 5 \, x^{4} - 2 \, x^{3} + {\left (x^{2} - 2 \, x\right )} \log \relax (x)^{2} - {\left (x^{3} - 6 \, x^{2} + 8 \, x\right )} \log \relax (3) + 2 \, {\left (x^{4} - 3 \, x^{3} + 2 \, x^{2}\right )} \log \relax (x) + 5}{x^{4} - 2 \, x^{3} + x^{2} - {\left (x - 4\right )} \log \relax (3) + 2 \, {\left (x^{2} - x\right )} \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.37, size = 48, normalized size = 1.45 \begin {gather*} x^{2} - 2 \, x + \frac {5}{x^{4} - 2 \, x^{3} + 2 \, x^{2} \log \relax (x) + x^{2} - x \log \relax (3) - 2 \, x \log \relax (x) + \log \relax (x)^{2} + 4 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 54, normalized size = 1.64
method | result | size |
risch | \(x^{2}-2 x -\frac {5}{-x^{4}+2 x^{3}-2 x^{2} \ln \relax (x )+x \ln \relax (3)-x^{2}+2 x \ln \relax (x )-\ln \relax (x )^{2}-4 \ln \relax (3)}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 105, normalized size = 3.18 \begin {gather*} \frac {x^{6} - 4 \, x^{5} + 5 \, x^{4} - x^{3} {\left (\log \relax (3) + 2\right )} + 6 \, x^{2} \log \relax (3) + {\left (x^{2} - 2 \, x\right )} \log \relax (x)^{2} - 8 \, x \log \relax (3) + 2 \, {\left (x^{4} - 3 \, x^{3} + 2 \, x^{2}\right )} \log \relax (x) + 5}{x^{4} - 2 \, x^{3} + x^{2} - x \log \relax (3) + 2 \, {\left (x^{2} - x\right )} \log \relax (x) + \log \relax (x)^{2} + 4 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {10\,x-{\ln \relax (3)}^2\,\left (-2\,x^4+18\,x^3-48\,x^2+32\,x\right )-{\ln \relax (x)}^4\,\left (2\,x-2\,x^2\right )+\ln \relax (3)\,\left (-4\,x^7+28\,x^6-60\,x^5+52\,x^4-16\,x^3+5\,x\right )-{\ln \relax (x)}^2\,\left (\ln \relax (3)\,\left (4\,x^3-20\,x^2+16\,x\right )+12\,x^3-36\,x^4+36\,x^5-12\,x^6\right )+{\ln \relax (x)}^3\,\left (8\,x^4-16\,x^3+8\,x^2\right )+\ln \relax (x)\,\left (10\,x+\ln \relax (3)\,\left (-8\,x^5+48\,x^4-72\,x^3+32\,x^2\right )-20\,x^2+8\,x^4-32\,x^5+48\,x^6-32\,x^7+8\,x^8-10\right )-20\,x^2+30\,x^3-20\,x^4-2\,x^5+10\,x^6-20\,x^7+20\,x^8-10\,x^9+2\,x^{10}}{\ln \relax (3)\,\left (-2\,x^6+12\,x^5-18\,x^4+8\,x^3\right )+x\,{\ln \relax (x)}^4-\ln \relax (x)\,\left (\ln \relax (3)\,\left (4\,x^4-20\,x^3+16\,x^2\right )+4\,x^4-12\,x^5+12\,x^6-4\,x^7\right )-{\ln \relax (x)}^3\,\left (4\,x^2-4\,x^3\right )+{\ln \relax (3)}^2\,\left (x^3-8\,x^2+16\,x\right )+x^5-4\,x^6+6\,x^7-4\,x^8+x^9+{\ln \relax (x)}^2\,\left (\ln \relax (3)\,\left (8\,x-2\,x^2\right )+6\,x^3-12\,x^4+6\,x^5\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 46, normalized size = 1.39 \begin {gather*} x^{2} - 2 x + \frac {5}{x^{4} - 2 x^{3} + x^{2} - x \log {\relax (3 )} + \left (2 x^{2} - 2 x\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 4 \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________