Optimal. Leaf size=21 \[ -1+e^{\frac {e^x}{x}}-i \pi +2 x+\log (3) \]
________________________________________________________________________________________
Rubi [F] time = 0.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {e^x}{x}+x} (-1+x)+2 x^2}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2+\frac {e^{\frac {e^x}{x}+x} (-1+x)}{x^2}\right ) \, dx\\ &=2 x+\int \frac {e^{\frac {e^x}{x}+x} (-1+x)}{x^2} \, dx\\ &=2 x+\int \left (-\frac {e^{\frac {e^x}{x}+x}}{x^2}+\frac {e^{\frac {e^x}{x}+x}}{x}\right ) \, dx\\ &=2 x-\int \frac {e^{\frac {e^x}{x}+x}}{x^2} \, dx+\int \frac {e^{\frac {e^x}{x}+x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 13, normalized size = 0.62 \begin {gather*} e^{\frac {e^x}{x}}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 22, normalized size = 1.05 \begin {gather*} {\left (2 \, x e^{x} + e^{\left (\frac {x^{2} + e^{x}}{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 22, normalized size = 1.05 \begin {gather*} {\left (2 \, x e^{x} + e^{\left (\frac {x^{2} + e^{x}}{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 12, normalized size = 0.57
method | result | size |
risch | \(2 x +{\mathrm e}^{\frac {{\mathrm e}^{x}}{x}}\) | \(12\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {{\mathrm e}^{x}}{x}}+2 x^{2}}{x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 11, normalized size = 0.52 \begin {gather*} 2 \, x + e^{\left (\frac {e^{x}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 11, normalized size = 0.52 \begin {gather*} 2\,x+{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 8, normalized size = 0.38 \begin {gather*} 2 x + e^{\frac {e^{x}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________