Optimal. Leaf size=37 \[ -\frac {\left (5-5 \left (-e^{3-e^3-x}-\frac {1-x}{x}+x\right )\right )^2}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 65, normalized size of antiderivative = 1.76, number of steps used = 17, number of rules used = 5, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {14, 2197, 2199, 2177, 2178} \begin {gather*} -\frac {25}{x^4}-\frac {50 e^{-x-e^3+3}}{x^3}-\frac {25 e^{2 \left (3-e^3\right )-2 x}}{x^2}+\frac {50}{x^2}+\frac {50 e^{-x-e^3+3}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2177
Rule 2178
Rule 2197
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {50 e^{6-2 e^3-2 x} (1+x)}{x^3}-\frac {100 \left (-1+x^2\right )}{x^5}-\frac {50 e^{3-e^3-x} \left (-3-x+x^2+x^3\right )}{x^4}\right ) \, dx\\ &=50 \int \frac {e^{6-2 e^3-2 x} (1+x)}{x^3} \, dx-50 \int \frac {e^{3-e^3-x} \left (-3-x+x^2+x^3\right )}{x^4} \, dx-100 \int \frac {-1+x^2}{x^5} \, dx\\ &=-\frac {25 e^{2 \left (3-e^3\right )-2 x}}{x^2}-50 \int \left (-\frac {3 e^{3-e^3-x}}{x^4}-\frac {e^{3-e^3-x}}{x^3}+\frac {e^{3-e^3-x}}{x^2}+\frac {e^{3-e^3-x}}{x}\right ) \, dx-100 \int \left (-\frac {1}{x^5}+\frac {1}{x^3}\right ) \, dx\\ &=-\frac {25}{x^4}+\frac {50}{x^2}-\frac {25 e^{2 \left (3-e^3\right )-2 x}}{x^2}+50 \int \frac {e^{3-e^3-x}}{x^3} \, dx-50 \int \frac {e^{3-e^3-x}}{x^2} \, dx-50 \int \frac {e^{3-e^3-x}}{x} \, dx+150 \int \frac {e^{3-e^3-x}}{x^4} \, dx\\ &=-\frac {25}{x^4}-\frac {50 e^{3-e^3-x}}{x^3}+\frac {50}{x^2}-\frac {25 e^{2 \left (3-e^3\right )-2 x}}{x^2}-\frac {25 e^{3-e^3-x}}{x^2}+\frac {50 e^{3-e^3-x}}{x}-50 e^{3-e^3} \text {Ei}(-x)-25 \int \frac {e^{3-e^3-x}}{x^2} \, dx-50 \int \frac {e^{3-e^3-x}}{x^3} \, dx+50 \int \frac {e^{3-e^3-x}}{x} \, dx\\ &=-\frac {25}{x^4}-\frac {50 e^{3-e^3-x}}{x^3}+\frac {50}{x^2}-\frac {25 e^{2 \left (3-e^3\right )-2 x}}{x^2}+\frac {75 e^{3-e^3-x}}{x}+25 \int \frac {e^{3-e^3-x}}{x^2} \, dx+25 \int \frac {e^{3-e^3-x}}{x} \, dx\\ &=-\frac {25}{x^4}-\frac {50 e^{3-e^3-x}}{x^3}+\frac {50}{x^2}-\frac {25 e^{2 \left (3-e^3\right )-2 x}}{x^2}+\frac {50 e^{3-e^3-x}}{x}+25 e^{3-e^3} \text {Ei}(-x)-25 \int \frac {e^{3-e^3-x}}{x} \, dx\\ &=-\frac {25}{x^4}-\frac {50 e^{3-e^3-x}}{x^3}+\frac {50}{x^2}-\frac {25 e^{2 \left (3-e^3\right )-2 x}}{x^2}+\frac {50 e^{3-e^3-x}}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 58, normalized size = 1.57 \begin {gather*} -50 \left (\frac {1}{2 x^4}-\frac {1}{x^2}+\frac {e^{6-2 e^3-2 x}}{2 x^2}-\frac {e^{3-e^3-x} \left (-x+x^3\right )}{x^4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 45, normalized size = 1.22 \begin {gather*} -\frac {25 \, {\left (x^{2} e^{\left (-2 \, x - 2 \, e^{3} + 6\right )} - 2 \, x^{2} - 2 \, {\left (x^{3} - x\right )} e^{\left (-x - e^{3} + 3\right )} + 1\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 55, normalized size = 1.49 \begin {gather*} \frac {25 \, {\left (2 \, x^{3} e^{\left (-x - e^{3} + 3\right )} - x^{2} e^{\left (-2 \, x - 2 \, e^{3} + 6\right )} + 2 \, x^{2} - 2 \, x e^{\left (-x - e^{3} + 3\right )} - 1\right )}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 48, normalized size = 1.30
method | result | size |
risch | \(\frac {50 x^{2}-25}{x^{4}}-\frac {25 \,{\mathrm e}^{-2 \,{\mathrm e}^{3}+6-2 x}}{x^{2}}+\frac {50 \left (x^{2}-1\right ) {\mathrm e}^{-{\mathrm e}^{3}+3-x}}{x^{3}}\) | \(48\) |
norman | \(\frac {-25+50 x^{2}-50 \,{\mathrm e}^{-{\mathrm e}^{3}+3-x} x +50 \,{\mathrm e}^{-{\mathrm e}^{3}+3-x} x^{3}-25 \,{\mathrm e}^{-2 \,{\mathrm e}^{3}+6-2 x} x^{2}}{x^{4}}\) | \(57\) |
derivativedivides | \(\text {Expression too large to display}\) | \(3528\) |
default | \(\text {Expression too large to display}\) | \(3528\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 1.05, size = 88, normalized size = 2.38 \begin {gather*} -50 \, {\rm Ei}\left (-x\right ) e^{\left (-e^{3} + 3\right )} - 100 \, e^{\left (-2 \, e^{3} + 6\right )} \Gamma \left (-1, 2 \, x\right ) + 50 \, e^{\left (-e^{3} + 3\right )} \Gamma \left (-1, x\right ) - 200 \, e^{\left (-2 \, e^{3} + 6\right )} \Gamma \left (-2, 2 \, x\right ) - 50 \, e^{\left (-e^{3} + 3\right )} \Gamma \left (-2, x\right ) - 150 \, e^{\left (-e^{3} + 3\right )} \Gamma \left (-3, x\right ) + \frac {50}{x^{2}} - \frac {25}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.56, size = 59, normalized size = 1.59 \begin {gather*} \frac {50}{x^2}-\frac {25}{x^4}+\frac {50\,{\mathrm {e}}^{-{\mathrm {e}}^3}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3}{x}-\frac {50\,{\mathrm {e}}^{-{\mathrm {e}}^3}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^3}{x^3}-\frac {25\,{\mathrm {e}}^{-2\,{\mathrm {e}}^3}\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^6}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 48, normalized size = 1.30 \begin {gather*} - \frac {25 - 50 x^{2}}{x^{4}} + \frac {- 25 x^{3} e^{- 2 x - 2 e^{3} + 6} + \left (50 x^{4} - 50 x^{2}\right ) e^{- x - e^{3} + 3}}{x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________