Optimal. Leaf size=26 \[ e^{-e^{-1+e^x+3 (5-\log (5))}+x \log (2) \log (3)} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 20, normalized size of antiderivative = 0.77, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6706} \begin {gather*} e^{-\frac {1}{125} e^{e^x+14}} 2^{x \log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2^{x \log (3)} e^{-\frac {1}{125} e^{14+e^x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 20, normalized size = 0.77 \begin {gather*} e^{-\frac {1}{125} e^{14+e^x}+x \log (2) \log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 27, normalized size = 1.04 \begin {gather*} e^{\left ({\left (x e^{x} \log \relax (3) \log \relax (2) - e^{\left (x + e^{x} - 3 \, \log \relax (5) + 14\right )}\right )} e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 19, normalized size = 0.73 \begin {gather*} e^{\left (x \log \relax (3) \log \relax (2) - e^{\left (e^{x} - 3 \, \log \relax (5) + 14\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.62
method | result | size |
risch | \(2^{x \ln \relax (3)} {\mathrm e}^{-\frac {{\mathrm e}^{{\mathrm e}^{x}+14}}{125}}\) | \(16\) |
derivativedivides | \({\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}-3 \ln \relax (5)+14}+x \ln \relax (2) \ln \relax (3)}\) | \(20\) |
default | \({\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}-3 \ln \relax (5)+14}+x \ln \relax (2) \ln \relax (3)}\) | \(20\) |
norman | \({\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}-3 \ln \relax (5)+14}+x \ln \relax (2) \ln \relax (3)}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 15, normalized size = 0.58 \begin {gather*} e^{\left (x \log \relax (3) \log \relax (2) - \frac {1}{125} \, e^{\left (e^{x} + 14\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 15, normalized size = 0.58 \begin {gather*} 2^{x\,\ln \relax (3)}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{14}}{125}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 17, normalized size = 0.65 \begin {gather*} e^{x \log {\relax (2 )} \log {\relax (3 )} - \frac {e^{e^{x} + 14}}{125}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________