Optimal. Leaf size=21 \[ \frac {4}{4-e+48 e^{-4-x}+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 1.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12 e^{4+x}-\frac {1}{2} e^{8+2 x}}{144+\frac {1}{4} e^{4+x} (96-24 e+48 x)+\frac {1}{16} e^{8+2 x} \left (16+e^2+e (-8-4 x)+16 x+4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{4+x} \left (24-e^{4+x}\right )}{\left (48-e^{5+x}+2 e^{4+x} (2+x)\right )^2} \, dx\\ &=8 \int \frac {e^{4+x} \left (24-e^{4+x}\right )}{\left (48-e^{5+x}+2 e^{4+x} (2+x)\right )^2} \, dx\\ &=8 \int \left (\frac {24 e^{4+x} (6-e+2 x)}{(4-e+2 x) \left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )^2}+\frac {e^{4+x}}{(-4+e-2 x) \left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )}\right ) \, dx\\ &=8 \int \frac {e^{4+x}}{(-4+e-2 x) \left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )} \, dx+192 \int \frac {e^{4+x} (6-e+2 x)}{(4-e+2 x) \left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )^2} \, dx\\ &=8 \int \frac {e^{4+x}}{(-4+e-2 x) \left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )} \, dx+192 \int \left (\frac {e^{4+x}}{\left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )^2}+\frac {2 e^{4+x}}{(4-e+2 x) \left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )^2}\right ) \, dx\\ &=8 \int \frac {e^{4+x}}{(-4+e-2 x) \left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )} \, dx+192 \int \frac {e^{4+x}}{\left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )^2} \, dx+384 \int \frac {e^{4+x}}{(4-e+2 x) \left (48+4 \left (1-\frac {e}{4}\right ) e^{4+x}+2 e^{4+x} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 26, normalized size = 1.24 \begin {gather*} -\frac {4 e^{4+x}}{-48+e^{5+x}-2 e^{4+x} (2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 32, normalized size = 1.52 \begin {gather*} \frac {4 \, e^{\left (x - 2 \, \log \relax (2) + 4\right )}}{{\left (2 \, x - e + 4\right )} e^{\left (x - 2 \, \log \relax (2) + 4\right )} + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 29, normalized size = 1.38 \begin {gather*} \frac {4 \, e^{\left (x + 4\right )}}{2 \, x e^{\left (x + 4\right )} - e^{\left (x + 5\right )} + 4 \, e^{\left (x + 4\right )} + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 47, normalized size = 2.24
method | result | size |
norman | \(-\frac {4 \,{\mathrm e}^{-2 \ln \relax (2)+4+x}}{{\mathrm e}^{-2 \ln \relax (2)+4+x} {\mathrm e}-2 \,{\mathrm e}^{-2 \ln \relax (2)+4+x} x -4 \,{\mathrm e}^{-2 \ln \relax (2)+4+x}-12}\) | \(47\) |
risch | \(-\frac {4}{{\mathrm e}-2 x -4}-\frac {48}{\left ({\mathrm e}-2 x -4\right ) \left (\frac {{\mathrm e}^{5+x}}{4}-\frac {x \,{\mathrm e}^{4+x}}{2}-{\mathrm e}^{4+x}-12\right )}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 27, normalized size = 1.29 \begin {gather*} \frac {4 \, e^{\left (x + 4\right )}}{{\left (2 \, x e^{4} - e^{5} + 4 \, e^{4}\right )} e^{x} + 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.76, size = 27, normalized size = 1.29 \begin {gather*} \frac {{\mathrm {e}}^4\,{\mathrm {e}}^x}{{\mathrm {e}}^4\,{\mathrm {e}}^x-\frac {{\mathrm {e}}^5\,{\mathrm {e}}^x}{4}+\frac {x\,{\mathrm {e}}^4\,{\mathrm {e}}^x}{2}+12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.31, size = 53, normalized size = 2.52 \begin {gather*} - \frac {192}{96 x + \left (4 x^{2} - 4 e x + 16 x - 8 e + e^{2} + 16\right ) e^{x + 4} - 48 e + 192} + \frac {8}{4 x - 2 e + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________