Optimal. Leaf size=26 \[ \frac {25}{9} e^{2-2 x+\frac {2 x \left (-e^5+x\right )}{\log (4)}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 53, normalized size of antiderivative = 2.04, number of steps used = 5, number of rules used = 4, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {12, 6741, 2274, 2288} \begin {gather*} -\frac {25 e^{\frac {2 \left (x^2-x \left (e^5+\log (4)\right )\right )}{\log (4)}+2} \left (2 x^2-x \left (e^5+\log (4)\right )\right )}{9 \left (-2 x+e^5+\log (4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2274
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{\frac {2 \left (-e^5 x+x^2+(1-x) \log (4)\right )}{\log (4)}} \left (-50 e^5 x+100 x^2+(25-50 x) \log (4)\right ) \, dx}{9 \log (4)}\\ &=\frac {\int e^{\frac {2 \left (x^2+\log (4)-x \left (e^5+\log (4)\right )\right )}{\log (4)}} \left (100 x^2+25 \log (4)-50 x \left (e^5+\log (4)\right )\right ) \, dx}{9 \log (4)}\\ &=\frac {\int 4^{\frac {2}{\log (4)}} e^{\frac {2 \left (x^2-x \left (e^5+\log (4)\right )\right )}{\log (4)}} \left (100 x^2+25 \log (4)-50 x \left (e^5+\log (4)\right )\right ) \, dx}{9 \log (4)}\\ &=\frac {e^2 \int e^{\frac {2 \left (x^2-x \left (e^5+\log (4)\right )\right )}{\log (4)}} \left (100 x^2+25 \log (4)-50 x \left (e^5+\log (4)\right )\right ) \, dx}{9 \log (4)}\\ &=-\frac {25 e^{2+\frac {2 \left (x^2-x \left (e^5+\log (4)\right )\right )}{\log (4)}} \left (2 x^2-x \left (e^5+\log (4)\right )\right )}{9 \left (e^5-2 x+\log (4)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 52, normalized size = 2.00 \begin {gather*} \frac {25 e^{\frac {2 \left (-e^5 x+x^2+\log (4)-x \log (4)\right )}{\log (4)}} x \left (2 e^5-4 x+\log (16)\right )}{18 \left (e^5-2 x+\log (4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 25, normalized size = 0.96 \begin {gather*} \frac {25}{9} \, x e^{\left (\frac {x^{2} - x e^{5} - 2 \, {\left (x - 1\right )} \log \relax (2)}{\log \relax (2)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.20, size = 213, normalized size = 8.19 \begin {gather*} -\frac {25 \, {\left (-i \, \sqrt {\pi } {\left (2 \, e^{5} \log \relax (2) + e^{10}\right )} \operatorname {erf}\left (-\frac {i \, {\left (2 \, x - e^{5} - 2 \, \log \relax (2)\right )}}{2 \, \sqrt {\log \relax (2)}}\right ) e^{\left (-\frac {4 \, e^{5} \log \relax (2) + 4 \, \log \relax (2)^{2} + e^{10} - 8 \, \log \relax (2)}{4 \, \log \relax (2)}\right )} \sqrt {\log \relax (2)} + i \, \sqrt {\pi } {\left (e^{5} + 2 \, \log \relax (2)\right )} \operatorname {erf}\left (-\frac {i \, {\left (2 \, x - e^{5} - 2 \, \log \relax (2)\right )}}{2 \, \sqrt {\log \relax (2)}}\right ) e^{\left (-\frac {4 \, e^{5} \log \relax (2) + 4 \, \log \relax (2)^{2} + e^{10} - 28 \, \log \relax (2)}{4 \, \log \relax (2)}\right )} \sqrt {\log \relax (2)} - 2 \, {\left ({\left (2 \, x - e^{5} - 2 \, \log \relax (2)\right )} \log \relax (2) + 2 \, e^{5} \log \relax (2) + 2 \, \log \relax (2)^{2}\right )} e^{\left (\frac {x^{2} - x e^{5} - 2 \, x \log \relax (2) + 2 \, \log \relax (2)}{\log \relax (2)}\right )} + 2 \, e^{\left (\frac {x^{2} - x e^{5} - 2 \, x \log \relax (2) + 7 \, \log \relax (2)}{\log \relax (2)}\right )} \log \relax (2)\right )}}{36 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 30, normalized size = 1.15
method | result | size |
risch | \(\frac {25 x \,{\mathrm e}^{-\frac {x \,{\mathrm e}^{5}+2 x \ln \relax (2)-x^{2}-2 \ln \relax (2)}{\ln \relax (2)}}}{9}\) | \(30\) |
norman | \(\frac {25 x \,{\mathrm e}^{\frac {2 \left (1-x \right ) \ln \relax (2)-x \,{\mathrm e}^{5}+x^{2}}{\ln \relax (2)}}}{9}\) | \(31\) |
gosper | \(\frac {25 \,{\mathrm e}^{-\frac {x \ln \relax (4)-2 \ln \relax (2)+x \,{\mathrm e}^{5}-x^{2}}{\ln \relax (2)}} x}{9}\) | \(32\) |
default | \(\frac {25 \ln \relax (2) x \,{\mathrm e}^{2+\frac {x^{2}}{\ln \relax (2)}+\left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right ) x}-\frac {25 i \ln \relax (2)^{\frac {3}{2}} \sqrt {\pi }\, {\mathrm e}^{2-\frac {\left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right )^{2} \ln \relax (2)}{4}} \erf \left (\frac {i x}{\sqrt {\ln \relax (2)}}+\frac {i \left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right ) \sqrt {\ln \relax (2)}}{2}\right ) {\mathrm e}^{5}}{2}+\frac {25 \ln \relax (2) {\mathrm e}^{5} {\mathrm e}^{2+\frac {x^{2}}{\ln \relax (2)}+\left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right ) x}}{2}-\frac {25 i {\mathrm e}^{10} \sqrt {\ln \relax (2)}\, \sqrt {\pi }\, {\mathrm e}^{2-\frac {\left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right )^{2} \ln \relax (2)}{4}} \erf \left (\frac {i x}{\sqrt {\ln \relax (2)}}+\frac {i \left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right ) \sqrt {\ln \relax (2)}}{2}\right )}{4}-\frac {25 \ln \relax (2) {\mathrm e}^{7+\frac {x^{2}}{\ln \relax (2)}+\left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right ) x}}{2}+\frac {25 i \ln \relax (2)^{\frac {3}{2}} \sqrt {\pi }\, {\mathrm e}^{7-\frac {\left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right )^{2} \ln \relax (2)}{4}} \erf \left (\frac {i x}{\sqrt {\ln \relax (2)}}+\frac {i \left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right ) \sqrt {\ln \relax (2)}}{2}\right )}{2}+\frac {25 i \sqrt {\ln \relax (2)}\, \sqrt {\pi }\, {\mathrm e}^{7-\frac {\left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right )^{2} \ln \relax (2)}{4}} \erf \left (\frac {i x}{\sqrt {\ln \relax (2)}}+\frac {i \left (-2-\frac {{\mathrm e}^{5}}{\ln \relax (2)}\right ) \sqrt {\ln \relax (2)}}{2}\right ) {\mathrm e}^{5}}{4}}{9 \ln \relax (2)}\) | \(324\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.54, size = 639, normalized size = 24.58 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.34, size = 28, normalized size = 1.08 \begin {gather*} \frac {25\,x\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^2\,{\mathrm {e}}^{\frac {x^2}{\ln \relax (2)}}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^5}{\ln \relax (2)}}}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 26, normalized size = 1.00 \begin {gather*} \frac {25 x e^{\frac {2 \left (\frac {x^{2}}{2} - \frac {x e^{5}}{2} + \frac {\left (2 - 2 x\right ) \log {\relax (2 )}}{2}\right )}{\log {\relax (2 )}}}}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________