Optimal. Leaf size=31 \[ x \left (2 x^2+\frac {4}{3} \left (e^{e^x x (3+x)}-e^x x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.14, antiderivative size = 70, normalized size of antiderivative = 2.26, number of steps used = 13, number of rules used = 6, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.102, Rules used = {12, 1593, 2196, 2176, 2194, 2288} \begin {gather*} -\frac {4}{3} e^x x^3+2 x^3+\frac {4 e^{e^x \left (x^2+3 x\right )+x} \left (x^3+5 x^2+3 x\right )}{3 \left (e^x \left (x^2+3 x\right )+e^x (2 x+3)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (18 x^2+e^x \left (-12 x^2-4 x^3\right )+e^{e^x \left (3 x+x^2\right )} \left (4+e^x \left (12 x+20 x^2+4 x^3\right )\right )\right ) \, dx\\ &=2 x^3+\frac {1}{3} \int e^x \left (-12 x^2-4 x^3\right ) \, dx+\frac {1}{3} \int e^{e^x \left (3 x+x^2\right )} \left (4+e^x \left (12 x+20 x^2+4 x^3\right )\right ) \, dx\\ &=2 x^3+\frac {4 e^{x+e^x \left (3 x+x^2\right )} \left (3 x+5 x^2+x^3\right )}{3 \left (e^x (3+2 x)+e^x \left (3 x+x^2\right )\right )}+\frac {1}{3} \int e^x (-12-4 x) x^2 \, dx\\ &=2 x^3+\frac {4 e^{x+e^x \left (3 x+x^2\right )} \left (3 x+5 x^2+x^3\right )}{3 \left (e^x (3+2 x)+e^x \left (3 x+x^2\right )\right )}+\frac {1}{3} \int \left (-12 e^x x^2-4 e^x x^3\right ) \, dx\\ &=2 x^3+\frac {4 e^{x+e^x \left (3 x+x^2\right )} \left (3 x+5 x^2+x^3\right )}{3 \left (e^x (3+2 x)+e^x \left (3 x+x^2\right )\right )}-\frac {4}{3} \int e^x x^3 \, dx-4 \int e^x x^2 \, dx\\ &=-4 e^x x^2+2 x^3-\frac {4 e^x x^3}{3}+\frac {4 e^{x+e^x \left (3 x+x^2\right )} \left (3 x+5 x^2+x^3\right )}{3 \left (e^x (3+2 x)+e^x \left (3 x+x^2\right )\right )}+4 \int e^x x^2 \, dx+8 \int e^x x \, dx\\ &=8 e^x x+2 x^3-\frac {4 e^x x^3}{3}+\frac {4 e^{x+e^x \left (3 x+x^2\right )} \left (3 x+5 x^2+x^3\right )}{3 \left (e^x (3+2 x)+e^x \left (3 x+x^2\right )\right )}-8 \int e^x \, dx-8 \int e^x x \, dx\\ &=-8 e^x+2 x^3-\frac {4 e^x x^3}{3}+\frac {4 e^{x+e^x \left (3 x+x^2\right )} \left (3 x+5 x^2+x^3\right )}{3 \left (e^x (3+2 x)+e^x \left (3 x+x^2\right )\right )}+8 \int e^x \, dx\\ &=2 x^3-\frac {4 e^x x^3}{3}+\frac {4 e^{x+e^x \left (3 x+x^2\right )} \left (3 x+5 x^2+x^3\right )}{3 \left (e^x (3+2 x)+e^x \left (3 x+x^2\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 31, normalized size = 1.00 \begin {gather*} \frac {1}{3} \left (4 e^{e^x x (3+x)} x+6 x^3-4 e^x x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 27, normalized size = 0.87 \begin {gather*} -\frac {4}{3} \, x^{3} e^{x} + 2 \, x^{3} + \frac {4}{3} \, x e^{\left ({\left (x^{2} + 3 \, x\right )} e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 6 \, x^{2} + \frac {4}{3} \, {\left ({\left (x^{3} + 5 \, x^{2} + 3 \, x\right )} e^{x} + 1\right )} e^{\left ({\left (x^{2} + 3 \, x\right )} e^{x}\right )} - \frac {4}{3} \, {\left (x^{3} + 3 \, x^{2}\right )} e^{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 0.81
method | result | size |
risch | \(2 x^{3}+\frac {4 x \,{\mathrm e}^{{\mathrm e}^{x} \left (3+x \right ) x}}{3}-\frac {4 \,{\mathrm e}^{x} x^{3}}{3}\) | \(25\) |
default | \(2 x^{3}+\frac {4 x \,{\mathrm e}^{\left (x^{2}+3 x \right ) {\mathrm e}^{x}}}{3}-\frac {4 \,{\mathrm e}^{x} x^{3}}{3}\) | \(28\) |
norman | \(2 x^{3}+\frac {4 x \,{\mathrm e}^{\left (x^{2}+3 x \right ) {\mathrm e}^{x}}}{3}-\frac {4 \,{\mathrm e}^{x} x^{3}}{3}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 51, normalized size = 1.65 \begin {gather*} 2 \, x^{3} + \frac {4}{3} \, x e^{\left (x^{2} e^{x} + 3 \, x e^{x}\right )} - \frac {4}{3} \, {\left (x^{3} - 3 \, x^{2} + 6 \, x - 6\right )} e^{x} - 4 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 29, normalized size = 0.94 \begin {gather*} 2\,x^3-\frac {4\,x^3\,{\mathrm {e}}^x}{3}+\frac {4\,x\,{\mathrm {e}}^{3\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^x}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 31, normalized size = 1.00 \begin {gather*} - \frac {4 x^{3} e^{x}}{3} + 2 x^{3} + \frac {4 x e^{\left (x^{2} + 3 x\right ) e^{x}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________