Optimal. Leaf size=31 \[ x \left (x-\frac {5 e^x x}{2 \left (x^2+\left (-x+\left (e^x+x\right )^2\right )^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 15.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 e^{8 x} x+32 e^{7 x} x^2+16 x^5-32 x^6+32 x^7-16 x^8+4 x^9+e^{6 x} \left (-16 x^2+112 x^3\right )+e^{5 x} \left (-10 x+15 x^2-96 x^3+224 x^4\right )+e^{4 x} \left (-20 x^2+72 x^3-240 x^4+280 x^5\right )+e^{3 x} \left (10 x^2-10 x^3+158 x^4-320 x^5+224 x^6\right )+e^{2 x} \left (-12 x^4+192 x^5-240 x^6+112 x^7\right )+e^x \left (-20 x^4-44 x^5+123 x^6-96 x^7+32 x^8\right )}{2 e^{8 x}+16 e^{7 x} x+8 x^4-16 x^5+16 x^6-8 x^7+2 x^8+e^{6 x} \left (-8 x+56 x^2\right )+e^{5 x} \left (-48 x^2+112 x^3\right )+e^{4 x} \left (16 x^2-120 x^3+140 x^4\right )+e^{3 x} \left (64 x^3-160 x^4+112 x^5\right )+e^{2 x} \left (-16 x^3+96 x^4-120 x^5+56 x^6\right )+e^x \left (-32 x^4+64 x^5-48 x^6+16 x^7\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (4 e^{8 x}+32 e^{7 x} x+16 e^{6 x} x (-1+7 x)+4 x^4 \left (2-2 x+x^2\right )^2+4 e^{2 x} x^3 \left (-3+48 x-60 x^2+28 x^3\right )+4 e^{4 x} x \left (-5+18 x-60 x^2+70 x^3\right )+e^{5 x} \left (-10+15 x-96 x^2+224 x^3\right )+e^x x^3 \left (-20-44 x+123 x^2-96 x^3+32 x^4\right )+2 e^{3 x} x \left (5-5 x+79 x^2-160 x^3+112 x^4\right )\right )}{2 \left (e^{4 x}+4 e^{3 x} x+4 e^x (-1+x) x^2+2 e^{2 x} x (-1+3 x)+x^2 \left (2-2 x+x^2\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {x \left (4 e^{8 x}+32 e^{7 x} x+16 e^{6 x} x (-1+7 x)+4 x^4 \left (2-2 x+x^2\right )^2+4 e^{2 x} x^3 \left (-3+48 x-60 x^2+28 x^3\right )+4 e^{4 x} x \left (-5+18 x-60 x^2+70 x^3\right )+e^{5 x} \left (-10+15 x-96 x^2+224 x^3\right )+e^x x^3 \left (-20-44 x+123 x^2-96 x^3+32 x^4\right )+2 e^{3 x} x \left (5-5 x+79 x^2-160 x^3+112 x^4\right )\right )}{\left (e^{4 x}+4 e^{3 x} x+4 e^x (-1+x) x^2+2 e^{2 x} x (-1+3 x)+x^2 \left (2-2 x+x^2\right )\right )^2} \, dx\\ &=\frac {1}{2} \int \left (4 x-\frac {5 x \left (2 e^x-4 x-3 e^x x+4 x^2\right )}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4}+\frac {10 x^2 \left (-e^{3 x}+2 e^x x-4 x^2+e^x x^2-4 e^{2 x} x^2+2 e^{3 x} x^2+8 x^3-10 e^x x^3+6 e^{2 x} x^3-6 x^4+6 e^x x^4+2 x^5\right )}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}\right ) \, dx\\ &=x^2-\frac {5}{2} \int \frac {x \left (2 e^x-4 x-3 e^x x+4 x^2\right )}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4} \, dx+5 \int \frac {x^2 \left (-e^{3 x}+2 e^x x-4 x^2+e^x x^2-4 e^{2 x} x^2+2 e^{3 x} x^2+8 x^3-10 e^x x^3+6 e^{2 x} x^3-6 x^4+6 e^x x^4+2 x^5\right )}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx\\ &=x^2-\frac {5}{2} \int \left (\frac {2 e^x x}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4}-\frac {4 x^2}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4}-\frac {3 e^x x^2}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4}+\frac {4 x^3}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4}\right ) \, dx+5 \int \left (-\frac {e^{3 x} x^2}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}+\frac {2 e^x x^3}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}-\frac {4 x^4}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}+\frac {e^x x^4}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}-\frac {4 e^{2 x} x^4}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}+\frac {2 e^{3 x} x^4}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}+\frac {8 x^5}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}-\frac {10 e^x x^5}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}+\frac {6 e^{2 x} x^5}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}-\frac {6 x^6}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}+\frac {6 e^x x^6}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}+\frac {2 x^7}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2}\right ) \, dx\\ &=x^2-5 \int \frac {e^{3 x} x^2}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx+5 \int \frac {e^x x^4}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx-5 \int \frac {e^x x}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4} \, dx+\frac {15}{2} \int \frac {e^x x^2}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4} \, dx+10 \int \frac {e^x x^3}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx+10 \int \frac {e^{3 x} x^4}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx+10 \int \frac {x^7}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx+10 \int \frac {x^2}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4} \, dx-10 \int \frac {x^3}{e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4} \, dx-20 \int \frac {x^4}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx-20 \int \frac {e^{2 x} x^4}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx+30 \int \frac {e^{2 x} x^5}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx-30 \int \frac {x^6}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx+30 \int \frac {e^x x^6}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx+40 \int \frac {x^5}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx-50 \int \frac {e^x x^5}{\left (e^{4 x}-2 e^{2 x} x+4 e^{3 x} x+2 x^2-4 e^x x^2+6 e^{2 x} x^2-2 x^3+4 e^x x^3+x^4\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.21, size = 66, normalized size = 2.13 \begin {gather*} \frac {1}{2} x^2 \left (2-\frac {5 e^x}{e^{4 x}+4 e^{3 x} x+4 e^x (-1+x) x^2+2 e^{2 x} x (-1+3 x)+x^2 \left (2-2 x+x^2\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 127, normalized size = 4.10 \begin {gather*} \frac {2 \, x^{6} - 4 \, x^{5} + 4 \, x^{4} + 8 \, x^{3} e^{\left (3 \, x\right )} + 2 \, x^{2} e^{\left (4 \, x\right )} + 4 \, {\left (3 \, x^{4} - x^{3}\right )} e^{\left (2 \, x\right )} + {\left (8 \, x^{5} - 8 \, x^{4} - 5 \, x^{2}\right )} e^{x}}{2 \, {\left (x^{4} - 2 \, x^{3} + 2 \, x^{2} + 4 \, x e^{\left (3 \, x\right )} + 2 \, {\left (3 \, x^{2} - x\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (4 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 6.29, size = 128, normalized size = 4.13 \begin {gather*} \frac {x^{6} + 4 \, x^{5} e^{x} - 2 \, x^{5} + 6 \, x^{4} e^{\left (2 \, x\right )} - 4 \, x^{4} e^{x} + 2 \, x^{4} + 4 \, x^{3} e^{\left (3 \, x\right )} - 2 \, x^{3} e^{\left (2 \, x\right )} + x^{2} e^{\left (4 \, x\right )} - 5 \, x^{2} e^{x}}{x^{4} + 4 \, x^{3} e^{x} - 2 \, x^{3} + 6 \, x^{2} e^{\left (2 \, x\right )} - 4 \, x^{2} e^{x} + 2 \, x^{2} + 4 \, x e^{\left (3 \, x\right )} - 2 \, x e^{\left (2 \, x\right )} + e^{\left (4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 69, normalized size = 2.23
method | result | size |
risch | \(x^{2}-\frac {5 x^{2} {\mathrm e}^{x}}{2 \left ({\mathrm e}^{4 x}+4 x \,{\mathrm e}^{3 x}+6 \,{\mathrm e}^{2 x} x^{2}+4 \,{\mathrm e}^{x} x^{3}+x^{4}-2 x \,{\mathrm e}^{2 x}-4 \,{\mathrm e}^{x} x^{2}-2 x^{3}+2 x^{2}\right )}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 127, normalized size = 4.10 \begin {gather*} \frac {2 \, x^{6} - 4 \, x^{5} + 4 \, x^{4} + 8 \, x^{3} e^{\left (3 \, x\right )} + 2 \, x^{2} e^{\left (4 \, x\right )} + 4 \, {\left (3 \, x^{4} - x^{3}\right )} e^{\left (2 \, x\right )} + {\left (8 \, x^{5} - 8 \, x^{4} - 5 \, x^{2}\right )} e^{x}}{2 \, {\left (x^{4} - 2 \, x^{3} + 2 \, x^{2} + 4 \, x e^{\left (3 \, x\right )} + 2 \, {\left (3 \, x^{2} - x\right )} e^{\left (2 \, x\right )} + 4 \, {\left (x^{3} - x^{2}\right )} e^{x} + e^{\left (4 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^{6\,x}\,\left (16\,x^2-112\,x^3\right )-4\,x\,{\mathrm {e}}^{8\,x}-{\mathrm {e}}^{3\,x}\,\left (224\,x^6-320\,x^5+158\,x^4-10\,x^3+10\,x^2\right )-32\,x^2\,{\mathrm {e}}^{7\,x}+{\mathrm {e}}^{5\,x}\,\left (-224\,x^4+96\,x^3-15\,x^2+10\,x\right )+{\mathrm {e}}^x\,\left (-32\,x^8+96\,x^7-123\,x^6+44\,x^5+20\,x^4\right )+{\mathrm {e}}^{2\,x}\,\left (-112\,x^7+240\,x^6-192\,x^5+12\,x^4\right )+{\mathrm {e}}^{4\,x}\,\left (-280\,x^5+240\,x^4-72\,x^3+20\,x^2\right )-16\,x^5+32\,x^6-32\,x^7+16\,x^8-4\,x^9}{2\,{\mathrm {e}}^{8\,x}-{\mathrm {e}}^{6\,x}\,\left (8\,x-56\,x^2\right )+16\,x\,{\mathrm {e}}^{7\,x}-{\mathrm {e}}^{5\,x}\,\left (48\,x^2-112\,x^3\right )-{\mathrm {e}}^x\,\left (-16\,x^7+48\,x^6-64\,x^5+32\,x^4\right )+{\mathrm {e}}^{4\,x}\,\left (140\,x^4-120\,x^3+16\,x^2\right )+{\mathrm {e}}^{3\,x}\,\left (112\,x^5-160\,x^4+64\,x^3\right )-{\mathrm {e}}^{2\,x}\,\left (-56\,x^6+120\,x^5-96\,x^4+16\,x^3\right )+8\,x^4-16\,x^5+16\,x^6-8\,x^7+2\,x^8} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.53, size = 68, normalized size = 2.19 \begin {gather*} x^{2} - \frac {5 x^{2} e^{x}}{2 x^{4} - 4 x^{3} + 4 x^{2} + 8 x e^{3 x} + \left (12 x^{2} - 4 x\right ) e^{2 x} + \left (8 x^{3} - 8 x^{2}\right ) e^{x} + 2 e^{4 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________