Optimal. Leaf size=28 \[ \frac {1}{5} e^{2-x} x+\frac {-\frac {1}{2}-x+\log \left (\frac {221}{25}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 43, normalized size of antiderivative = 1.54, number of steps used = 5, number of rules used = 4, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 14, 2176, 2194} \begin {gather*} -\frac {1}{5} e^{2-x} (1-x)+\frac {e^{2-x}}{5}-\frac {1-2 \log \left (\frac {221}{25}\right )}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int \frac {5+e^{2-x} \left (2 x^2-2 x^3\right )-10 \log \left (\frac {221}{25}\right )}{x^2} \, dx\\ &=\frac {1}{10} \int \left (-2 e^{2-x} (-1+x)-\frac {5 \left (-1+2 \log \left (\frac {221}{25}\right )\right )}{x^2}\right ) \, dx\\ &=-\frac {1-2 \log \left (\frac {221}{25}\right )}{2 x}-\frac {1}{5} \int e^{2-x} (-1+x) \, dx\\ &=-\frac {1}{5} e^{2-x} (1-x)-\frac {1-2 \log \left (\frac {221}{25}\right )}{2 x}-\frac {1}{5} \int e^{2-x} \, dx\\ &=\frac {e^{2-x}}{5}-\frac {1}{5} e^{2-x} (1-x)-\frac {1-2 \log \left (\frac {221}{25}\right )}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 27, normalized size = 0.96 \begin {gather*} \frac {-5+2 e^{2-x} x^2+10 \log \left (\frac {221}{25}\right )}{10 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 22, normalized size = 0.79 \begin {gather*} \frac {2 \, x^{2} e^{\left (-x + 2\right )} + 10 \, \log \left (\frac {221}{25}\right ) - 5}{10 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 22, normalized size = 0.79 \begin {gather*} \frac {2 \, x^{2} e^{\left (-x + 2\right )} + 10 \, \log \left (\frac {221}{25}\right ) - 5}{10 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 0.86
method | result | size |
norman | \(\frac {\frac {x^{2} {\mathrm e}^{2-x}}{5}+\ln \left (221\right )-2 \ln \relax (5)-\frac {1}{2}}{x}\) | \(24\) |
risch | \(-\frac {2 \ln \relax (5)}{x}+\frac {\ln \left (13\right )}{x}+\frac {\ln \left (17\right )}{x}-\frac {1}{2 x}+\frac {x \,{\mathrm e}^{2-x}}{5}\) | \(35\) |
derivativedivides | \(-\frac {1}{2 x}-\frac {2 \ln \relax (5)}{x}+\frac {\ln \left (221\right )}{x}+\frac {2 \,{\mathrm e}^{2-x}}{5}-\frac {{\mathrm e}^{2-x} \left (2-x \right )}{5}\) | \(41\) |
default | \(-\frac {1}{2 x}-\frac {2 \ln \relax (5)}{x}+\frac {\ln \left (221\right )}{x}+\frac {2 \,{\mathrm e}^{2-x}}{5}-\frac {{\mathrm e}^{2-x} \left (2-x \right )}{5}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 33, normalized size = 1.18 \begin {gather*} \frac {1}{5} \, {\left (x e^{2} + e^{2}\right )} e^{\left (-x\right )} + \frac {\log \left (\frac {221}{25}\right )}{x} - \frac {1}{2 \, x} - \frac {1}{5} \, e^{\left (-x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 18, normalized size = 0.64 \begin {gather*} \frac {\ln \left (\frac {221}{25}\right )-\frac {1}{2}}{x}+\frac {x\,{\mathrm {e}}^{2-x}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.71 \begin {gather*} \frac {x e^{2 - x}}{5} - \frac {- \log {\left (221 \right )} + \frac {1}{2} + 2 \log {\relax (5 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________