Optimal. Leaf size=26 \[ e^{\left (\frac {e^{-x}}{x}+\frac {x}{5}\right ) x^2 (15+x)^2} \]
________________________________________________________________________________________
Rubi [F] time = 4.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) \left (225-165 x-27 x^2-x^3+e^x \left (135 x^2+24 x^3+x^4\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) (15+x) \left (15-12 x-x^2+9 e^x x^2+e^x x^3\right ) \, dx\\ &=\int \left (225 \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right )-165 \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) x-27 \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) x^2-\exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) x^3+\exp \left (\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) x^2 \left (135+24 x+x^2\right )\right ) \, dx\\ &=-\left (27 \int \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) x^2 \, dx\right )-165 \int \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) x \, dx+225 \int \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) \, dx-\int \exp \left (-x+\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) x^3 \, dx+\int \exp \left (\frac {1}{5} e^{-x} \left (1125 x+150 x^2+5 x^3+e^x \left (225 x^3+30 x^4+x^5\right )\right )\right ) x^2 \left (135+24 x+x^2\right ) \, dx\\ &=-\left (27 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x^2 \, dx\right )-165 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x \, dx+225 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) \, dx-\int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x^3 \, dx+\int e^{\frac {1}{5} e^{-x} x (15+x)^2 \left (5+e^x x^2\right )} x^2 \left (135+24 x+x^2\right ) \, dx\\ &=-\left (27 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x^2 \, dx\right )-165 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x \, dx+225 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) \, dx-\int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x^3 \, dx+\int \left (135 e^{\frac {1}{5} e^{-x} x (15+x)^2 \left (5+e^x x^2\right )} x^2+24 e^{\frac {1}{5} e^{-x} x (15+x)^2 \left (5+e^x x^2\right )} x^3+e^{\frac {1}{5} e^{-x} x (15+x)^2 \left (5+e^x x^2\right )} x^4\right ) \, dx\\ &=24 \int e^{\frac {1}{5} e^{-x} x (15+x)^2 \left (5+e^x x^2\right )} x^3 \, dx-27 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x^2 \, dx+135 \int e^{\frac {1}{5} e^{-x} x (15+x)^2 \left (5+e^x x^2\right )} x^2 \, dx-165 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x \, dx+225 \int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) \, dx-\int \exp \left (-x+45 x^3+6 x^4+\frac {x^5}{5}+e^{-x} x (15+x)^2\right ) x^3 \, dx+\int e^{\frac {1}{5} e^{-x} x (15+x)^2 \left (5+e^x x^2\right )} x^4 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.94, size = 26, normalized size = 1.00 \begin {gather*} e^{\frac {1}{5} e^{-x} x (15+x)^2 \left (5+e^x x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 43, normalized size = 1.65 \begin {gather*} e^{\left (\frac {1}{5} \, {\left (5 \, x^{3} + 150 \, x^{2} + {\left (x^{5} + 30 \, x^{4} + 225 \, x^{3} - 5 \, x\right )} e^{x} + 1125 \, x\right )} e^{\left (-x\right )} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -{\left (x^{3} + 27 \, x^{2} - {\left (x^{4} + 24 \, x^{3} + 135 \, x^{2}\right )} e^{x} + 165 \, x - 225\right )} e^{\left (\frac {1}{5} \, {\left (5 \, x^{3} + 150 \, x^{2} + {\left (x^{5} + 30 \, x^{4} + 225 \, x^{3}\right )} e^{x} + 1125 \, x\right )} e^{\left (-x\right )} - x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 22, normalized size = 0.85
method | result | size |
risch | \({\mathrm e}^{\frac {x \left (x +15\right )^{2} \left ({\mathrm e}^{x} x^{2}+5\right ) {\mathrm e}^{-x}}{5}}\) | \(22\) |
norman | \({\mathrm e}^{\frac {\left (\left (x^{5}+30 x^{4}+225 x^{3}\right ) {\mathrm e}^{x}+5 x^{3}+150 x^{2}+1125 x \right ) {\mathrm e}^{-x}}{5}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 41, normalized size = 1.58 \begin {gather*} e^{\left (\frac {1}{5} \, x^{5} + 6 \, x^{4} + x^{3} e^{\left (-x\right )} + 45 \, x^{3} + 30 \, x^{2} e^{\left (-x\right )} + 225 \, x e^{\left (-x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.41, size = 46, normalized size = 1.77 \begin {gather*} {\mathrm {e}}^{225\,x\,{\mathrm {e}}^{-x}}\,{\mathrm {e}}^{6\,x^4}\,{\mathrm {e}}^{\frac {x^5}{5}}\,{\mathrm {e}}^{45\,x^3}\,{\mathrm {e}}^{x^3\,{\mathrm {e}}^{-x}}\,{\mathrm {e}}^{30\,x^2\,{\mathrm {e}}^{-x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 34, normalized size = 1.31 \begin {gather*} e^{\left (x^{3} + 30 x^{2} + 225 x + \frac {\left (x^{5} + 30 x^{4} + 225 x^{3}\right ) e^{x}}{5}\right ) e^{- x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________