Optimal. Leaf size=28 \[ x+\frac {e}{\log (x)}+\frac {\log (6+x)}{5 \left (x^2-\log (2 x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e \left (-30 x^4-5 x^5\right )+\left (x^3+30 x^5+5 x^6\right ) \log ^2(x)+\left (e \left (60 x^2+10 x^3\right )+\left (-x-60 x^3-10 x^4\right ) \log ^2(x)\right ) \log (2 x)+\left (e (-30-5 x)+\left (30 x+5 x^2\right ) \log ^2(x)\right ) \log ^2(2 x)+\left (6+x-12 x^2-2 x^3\right ) \log ^2(x) \log (6+x)}{\left (30 x^5+5 x^6\right ) \log ^2(x)+\left (-60 x^3-10 x^4\right ) \log ^2(x) \log (2 x)+\left (30 x+5 x^2\right ) \log ^2(x) \log ^2(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {5 e}{\log ^2(x)}+\frac {x^3+30 x^5+5 x^6-\left (x+60 x^3+10 x^4\right ) \log (2 x)+5 x (6+x) \log ^2(2 x)+\left (6+x-12 x^2-2 x^3\right ) \log (6+x)}{(6+x) \left (x^2-\log (2 x)\right )^2}}{5 x} \, dx\\ &=\frac {1}{5} \int \frac {-\frac {5 e}{\log ^2(x)}+\frac {x^3+30 x^5+5 x^6-\left (x+60 x^3+10 x^4\right ) \log (2 x)+5 x (6+x) \log ^2(2 x)+\left (6+x-12 x^2-2 x^3\right ) \log (6+x)}{(6+x) \left (x^2-\log (2 x)\right )^2}}{x} \, dx\\ &=\frac {1}{5} \int \left (-\frac {5 e}{x \log ^2(x)}+\frac {x^2}{(6+x) \left (x^2-\log (2 x)\right )^2}+\frac {30 x^4}{(6+x) \left (x^2-\log (2 x)\right )^2}+\frac {5 x^5}{(6+x) \left (x^2-\log (2 x)\right )^2}-\frac {\left (1+60 x^2+10 x^3\right ) \log (2 x)}{(6+x) \left (x^2-\log (2 x)\right )^2}+\frac {5 \log ^2(2 x)}{\left (x^2-\log (2 x)\right )^2}-\frac {\left (-1+2 x^2\right ) \log (6+x)}{x \left (x^2-\log (2 x)\right )^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {x^2}{(6+x) \left (x^2-\log (2 x)\right )^2} \, dx-\frac {1}{5} \int \frac {\left (1+60 x^2+10 x^3\right ) \log (2 x)}{(6+x) \left (x^2-\log (2 x)\right )^2} \, dx-\frac {1}{5} \int \frac {\left (-1+2 x^2\right ) \log (6+x)}{x \left (x^2-\log (2 x)\right )^2} \, dx+6 \int \frac {x^4}{(6+x) \left (x^2-\log (2 x)\right )^2} \, dx-e \int \frac {1}{x \log ^2(x)} \, dx+\int \frac {x^5}{(6+x) \left (x^2-\log (2 x)\right )^2} \, dx+\int \frac {\log ^2(2 x)}{\left (x^2-\log (2 x)\right )^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {6}{\left (x^2-\log (2 x)\right )^2}+\frac {x}{\left (x^2-\log (2 x)\right )^2}+\frac {36}{(6+x) \left (x^2-\log (2 x)\right )^2}\right ) \, dx-\frac {1}{5} \int \left (\frac {x^2 \left (1+60 x^2+10 x^3\right )}{(6+x) \left (x^2-\log (2 x)\right )^2}+\frac {-1-60 x^2-10 x^3}{(6+x) \left (x^2-\log (2 x)\right )}\right ) \, dx-\frac {1}{5} \int \left (-\frac {\log (6+x)}{x \left (x^2-\log (2 x)\right )^2}+\frac {2 x \log (6+x)}{\left (x^2-\log (2 x)\right )^2}\right ) \, dx+6 \int \left (-\frac {216}{\left (x^2-\log (2 x)\right )^2}+\frac {36 x}{\left (x^2-\log (2 x)\right )^2}-\frac {6 x^2}{\left (x^2-\log (2 x)\right )^2}+\frac {x^3}{\left (x^2-\log (2 x)\right )^2}+\frac {1296}{(6+x) \left (x^2-\log (2 x)\right )^2}\right ) \, dx-e \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )+\int \left (\frac {1296}{\left (x^2-\log (2 x)\right )^2}-\frac {216 x}{\left (x^2-\log (2 x)\right )^2}+\frac {36 x^2}{\left (x^2-\log (2 x)\right )^2}-\frac {6 x^3}{\left (x^2-\log (2 x)\right )^2}+\frac {x^4}{\left (x^2-\log (2 x)\right )^2}-\frac {7776}{(6+x) \left (x^2-\log (2 x)\right )^2}\right ) \, dx+\int \left (1+\frac {x^4}{\left (x^2-\log (2 x)\right )^2}-\frac {2 x^2}{x^2-\log (2 x)}\right ) \, dx\\ &=x+\frac {e}{\log (x)}+\frac {1}{5} \int \frac {x}{\left (x^2-\log (2 x)\right )^2} \, dx-\frac {1}{5} \int \frac {x^2 \left (1+60 x^2+10 x^3\right )}{(6+x) \left (x^2-\log (2 x)\right )^2} \, dx-\frac {1}{5} \int \frac {-1-60 x^2-10 x^3}{(6+x) \left (x^2-\log (2 x)\right )} \, dx+\frac {1}{5} \int \frac {\log (6+x)}{x \left (x^2-\log (2 x)\right )^2} \, dx-\frac {2}{5} \int \frac {x \log (6+x)}{\left (x^2-\log (2 x)\right )^2} \, dx-\frac {6}{5} \int \frac {1}{\left (x^2-\log (2 x)\right )^2} \, dx-2 \int \frac {x^2}{x^2-\log (2 x)} \, dx+\frac {36}{5} \int \frac {1}{(6+x) \left (x^2-\log (2 x)\right )^2} \, dx+2 \int \frac {x^4}{\left (x^2-\log (2 x)\right )^2} \, dx\\ &=x+\frac {e}{\log (x)}-\frac {1}{5} \int \left (-\frac {6}{\left (x^2-\log (2 x)\right )^2}+\frac {x}{\left (x^2-\log (2 x)\right )^2}+\frac {10 x^4}{\left (x^2-\log (2 x)\right )^2}+\frac {36}{(6+x) \left (x^2-\log (2 x)\right )^2}\right ) \, dx-\frac {1}{5} \int \left (-\frac {10 x^2}{x^2-\log (2 x)}-\frac {1}{(6+x) \left (x^2-\log (2 x)\right )}\right ) \, dx+\frac {1}{5} \int \frac {x}{\left (x^2-\log (2 x)\right )^2} \, dx+\frac {1}{5} \int \frac {\log (6+x)}{x \left (x^2-\log (2 x)\right )^2} \, dx-\frac {2}{5} \int \frac {x \log (6+x)}{\left (x^2-\log (2 x)\right )^2} \, dx-\frac {6}{5} \int \frac {1}{\left (x^2-\log (2 x)\right )^2} \, dx-2 \int \frac {x^2}{x^2-\log (2 x)} \, dx+\frac {36}{5} \int \frac {1}{(6+x) \left (x^2-\log (2 x)\right )^2} \, dx+2 \int \frac {x^4}{\left (x^2-\log (2 x)\right )^2} \, dx\\ &=x+\frac {e}{\log (x)}+\frac {1}{5} \int \frac {1}{(6+x) \left (x^2-\log (2 x)\right )} \, dx+\frac {1}{5} \int \frac {\log (6+x)}{x \left (x^2-\log (2 x)\right )^2} \, dx-\frac {2}{5} \int \frac {x \log (6+x)}{\left (x^2-\log (2 x)\right )^2} \, dx-2 \int \frac {x^4}{\left (x^2-\log (2 x)\right )^2} \, dx+2 \int \frac {x^4}{\left (x^2-\log (2 x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 33, normalized size = 1.18 \begin {gather*} \frac {1}{5} \left (5 x+\frac {5 e}{\log (x)}-\frac {\log (6+x)}{-x^2+\log (2 x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 67, normalized size = 2.39 \begin {gather*} \frac {5 \, x^{2} e - 5 \, x \log \relax (x)^{2} - 5 \, e \log \relax (2) + 5 \, {\left (x^{3} - x \log \relax (2) - e\right )} \log \relax (x) + \log \left (x + 6\right ) \log \relax (x)}{5 \, {\left ({\left (x^{2} - \log \relax (2)\right )} \log \relax (x) - \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 71, normalized size = 2.54 \begin {gather*} \frac {5 \, x^{3} \log \relax (x) + 5 \, x^{2} e - 5 \, x \log \relax (2) \log \relax (x) - 5 \, x \log \relax (x)^{2} - 5 \, e \log \relax (2) - 5 \, e \log \relax (x) + \log \left (x + 6\right ) \log \relax (x)}{5 \, {\left (x^{2} \log \relax (x) - \log \relax (2) \log \relax (x) - \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.37, size = 40, normalized size = 1.43
method | result | size |
risch | \(-\frac {2 i \ln \left (x +6\right )}{5 \left (-2 i x^{2}+2 i \ln \relax (2)+2 i \ln \relax (x )\right )}+\frac {x \ln \relax (x )+{\mathrm e}}{\ln \relax (x )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 67, normalized size = 2.39 \begin {gather*} \frac {5 \, x^{2} e - 5 \, x \log \relax (x)^{2} - 5 \, e \log \relax (2) + 5 \, {\left (x^{3} - x \log \relax (2) - e\right )} \log \relax (x) + \log \left (x + 6\right ) \log \relax (x)}{5 \, {\left ({\left (x^{2} - \log \relax (2)\right )} \log \relax (x) - \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.74, size = 29, normalized size = 1.04 \begin {gather*} x+\frac {\mathrm {e}}{\ln \relax (x)}-\frac {\ln \left (x+6\right )}{5\,\left (\ln \left (2\,x\right )-x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 27, normalized size = 0.96 \begin {gather*} x + \frac {e}{\log {\relax (x )}} + \frac {\log {\left (x + 6 \right )}}{5 x^{2} - 5 \log {\relax (x )} - 5 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________