Optimal. Leaf size=32 \[ \frac {4 x+\frac {x}{\log \left (x^2\right )}}{x \left (2+\frac {-5+3 x}{5 x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {50-130 x-25 \log \left (x^2\right )-100 \log ^2\left (x^2\right )}{\left (25-130 x+169 x^2\right ) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50-130 x-25 \log \left (x^2\right )-100 \log ^2\left (x^2\right )}{(-5+13 x)^2 \log ^2\left (x^2\right )} \, dx\\ &=\int \frac {5 \left (10-26 x-5 \log \left (x^2\right )-20 \log ^2\left (x^2\right )\right )}{(5-13 x)^2 \log ^2\left (x^2\right )} \, dx\\ &=5 \int \frac {10-26 x-5 \log \left (x^2\right )-20 \log ^2\left (x^2\right )}{(5-13 x)^2 \log ^2\left (x^2\right )} \, dx\\ &=5 \int \left (-\frac {20}{(-5+13 x)^2}-\frac {2}{(-5+13 x) \log ^2\left (x^2\right )}-\frac {5}{(-5+13 x)^2 \log \left (x^2\right )}\right ) \, dx\\ &=-\frac {100}{13 (5-13 x)}-10 \int \frac {1}{(-5+13 x) \log ^2\left (x^2\right )} \, dx-25 \int \frac {1}{(-5+13 x)^2 \log \left (x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 30, normalized size = 0.94 \begin {gather*} -5 \left (-\frac {20}{13 (-5+13 x)}-\frac {x}{(-5+13 x) \log \left (x^2\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 25, normalized size = 0.78 \begin {gather*} \frac {5 \, {\left (13 \, x + 20 \, \log \left (x^{2}\right )\right )}}{13 \, {\left (13 \, x - 5\right )} \log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 29, normalized size = 0.91 \begin {gather*} \frac {5 \, x}{13 \, x \log \left (x^{2}\right ) - 5 \, \log \left (x^{2}\right )} + \frac {100}{13 \, {\left (13 \, x - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.57, size = 26, normalized size = 0.81
method | result | size |
norman | \(\frac {20 x \ln \left (x^{2}\right )+5 x}{\left (13 x -5\right ) \ln \left (x^{2}\right )}\) | \(26\) |
risch | \(\frac {100}{13 \left (13 x -5\right )}+\frac {5 x}{\left (13 x -5\right ) \ln \left (x^{2}\right )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 21, normalized size = 0.66 \begin {gather*} \frac {5 \, {\left (13 \, x + 40 \, \log \relax (x)\right )}}{26 \, {\left (13 \, x - 5\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.25, size = 24, normalized size = 0.75 \begin {gather*} \frac {5\,x\,\left (4\,\ln \left (x^2\right )+1\right )}{\ln \left (x^2\right )\,\left (13\,x-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 19, normalized size = 0.59 \begin {gather*} \frac {5 x}{\left (13 x - 5\right ) \log {\left (x^{2} \right )}} + \frac {100}{169 x - 65} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________