Optimal. Leaf size=31 \[ \frac {2 \left (x-\left (x+\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )\right )^2\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 8.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 x+8 x^2+\left (8 x-16 x^2\right ) \log (x)+\frac {e^{-3+x^2} \left (-2 x+2 x^2+\left (6 x-4 x^2-8 x^3\right ) \log (x)\right )}{x}+\left (16 x-16 x \log (x)+\frac {e^{-3+x^2} \left (4 x+\left (4-4 x-8 x^2\right ) \log (x)\right )}{x}\right ) \log \left (4 \log (5)+\frac {e^{-3+x^2} \log (5)}{x}\right )+\left (8+\frac {2 e^{-3+x^2}}{x}\right ) \log ^2\left (4 \log (5)+\frac {e^{-3+x^2} \log (5)}{x}\right )}{e^{-3+x^2} \log ^2(x)+4 x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^3 \left (-8 x+8 x^2+\left (8 x-16 x^2\right ) \log (x)+\frac {e^{-3+x^2} \left (-2 x+2 x^2+\left (6 x-4 x^2-8 x^3\right ) \log (x)\right )}{x}+\left (16 x-16 x \log (x)+\frac {e^{-3+x^2} \left (4 x+\left (4-4 x-8 x^2\right ) \log (x)\right )}{x}\right ) \log \left (4 \log (5)+\frac {e^{-3+x^2} \log (5)}{x}\right )+\left (8+\frac {2 e^{-3+x^2}}{x}\right ) \log ^2\left (4 \log (5)+\frac {e^{-3+x^2} \log (5)}{x}\right )\right )}{\left (e^{x^2}+4 e^3 x\right ) \log ^2(x)} \, dx\\ &=e^3 \int \frac {-8 x+8 x^2+\left (8 x-16 x^2\right ) \log (x)+\frac {e^{-3+x^2} \left (-2 x+2 x^2+\left (6 x-4 x^2-8 x^3\right ) \log (x)\right )}{x}+\left (16 x-16 x \log (x)+\frac {e^{-3+x^2} \left (4 x+\left (4-4 x-8 x^2\right ) \log (x)\right )}{x}\right ) \log \left (4 \log (5)+\frac {e^{-3+x^2} \log (5)}{x}\right )+\left (8+\frac {2 e^{-3+x^2}}{x}\right ) \log ^2\left (4 \log (5)+\frac {e^{-3+x^2} \log (5)}{x}\right )}{\left (e^{x^2}+4 e^3 x\right ) \log ^2(x)} \, dx\\ &=e^3 \int \left (\frac {16 \left (-1+2 x^2\right ) \left (x+\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)}-\frac {2 \left (x-x^2-3 x \log (x)+2 x^2 \log (x)+4 x^3 \log (x)-2 x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )-2 \log (x) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )+2 x \log (x) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )+4 x^2 \log (x) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )-\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )\right )}{e^3 x \log ^2(x)}\right ) \, dx\\ &=-\left (2 \int \frac {x-x^2-3 x \log (x)+2 x^2 \log (x)+4 x^3 \log (x)-2 x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )-2 \log (x) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )+2 x \log (x) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )+4 x^2 \log (x) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )-\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx\right )+\left (16 e^3\right ) \int \frac {\left (-1+2 x^2\right ) \left (x+\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ &=-\left (2 \int \frac {x-x^2-2 x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )-\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )+\log (x) \left (x \left (-3+2 x+4 x^2\right )+2 \left (-1+x+2 x^2\right ) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )\right )}{x \log ^2(x)} \, dx\right )+\left (16 e^3\right ) \int \left (-\frac {x+\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)}+\frac {2 x^2 \left (x+\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)}\right ) \, dx\\ &=-\left (2 \int \left (\frac {1-x-3 \log (x)+2 x \log (x)+4 x^2 \log (x)}{\log ^2(x)}+\frac {2 \left (-x-\log (x)+x \log (x)+2 x^2 \log (x)\right ) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)}-\frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)}\right ) \, dx\right )-\left (16 e^3\right ) \int \frac {x+\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^2 \left (x+\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ &=-\left (2 \int \frac {1-x-3 \log (x)+2 x \log (x)+4 x^2 \log (x)}{\log ^2(x)} \, dx\right )+2 \int \frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx-4 \int \frac {\left (-x-\log (x)+x \log (x)+2 x^2 \log (x)\right ) \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx-\left (16 e^3\right ) \int \left (\frac {x}{\left (e^{x^2}+4 e^3 x\right ) \log (x)}+\frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)}\right ) \, dx+\left (32 e^3\right ) \int \left (\frac {x^3}{\left (e^{x^2}+4 e^3 x\right ) \log (x)}+\frac {x^2 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)}\right ) \, dx\\ &=-\left (2 \int \left (\frac {1-x}{\log ^2(x)}+\frac {-3+2 x+4 x^2}{\log (x)}\right ) \, dx\right )+2 \int \frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx-4 \int \left (-\frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log ^2(x)}+\frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)}-\frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log (x)}+\frac {2 x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)}\right ) \, dx-\left (16 e^3\right ) \int \frac {x}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx-\left (16 e^3\right ) \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^3}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^2 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ &=-\left (2 \int \frac {1-x}{\log ^2(x)} \, dx\right )-2 \int \frac {-3+2 x+4 x^2}{\log (x)} \, dx+2 \int \frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log ^2(x)} \, dx-4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log (x)} \, dx-8 \int \frac {x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)} \, dx-\left (16 e^3\right ) \int \frac {x}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx-\left (16 e^3\right ) \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^3}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^2 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ &=\frac {2 (1-x) x}{\log (x)}-4 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right ) \text {li}(x)-2 \int \left (-\frac {3}{\log (x)}+\frac {2 x}{\log (x)}+\frac {4 x^2}{\log (x)}\right ) \, dx+2 \int \frac {1}{\log (x)} \, dx+2 \int \frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx-4 \int \frac {1-x}{\log (x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log ^2(x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log (x)} \, dx+4 \int \frac {e^{x^2} \left (-1+2 x^2\right ) \text {li}(x)}{x \left (e^{x^2}+4 e^3 x\right )} \, dx-8 \int \frac {x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)} \, dx-\left (16 e^3\right ) \int \frac {x}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx-\left (16 e^3\right ) \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^3}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^2 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ &=\frac {2 (1-x) x}{\log (x)}+2 \text {li}(x)-4 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right ) \text {li}(x)+2 \int \frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx-4 \int \left (\frac {1}{\log (x)}-\frac {x}{\log (x)}\right ) \, dx-4 \int \frac {x}{\log (x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log ^2(x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log (x)} \, dx+4 \int \left (-\frac {e^{x^2} \text {li}(x)}{x \left (e^{x^2}+4 e^3 x\right )}+\frac {2 e^{x^2} x \text {li}(x)}{e^{x^2}+4 e^3 x}\right ) \, dx+6 \int \frac {1}{\log (x)} \, dx-8 \int \frac {x^2}{\log (x)} \, dx-8 \int \frac {x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)} \, dx-\left (16 e^3\right ) \int \frac {x}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx-\left (16 e^3\right ) \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^3}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^2 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ &=\frac {2 (1-x) x}{\log (x)}+8 \text {li}(x)-4 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right ) \text {li}(x)+2 \int \frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx-4 \int \frac {1}{\log (x)} \, dx+4 \int \frac {x}{\log (x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log ^2(x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log (x)} \, dx-4 \int \frac {e^{x^2} \text {li}(x)}{x \left (e^{x^2}+4 e^3 x\right )} \, dx-4 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-8 \int \frac {x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)} \, dx+8 \int \frac {e^{x^2} x \text {li}(x)}{e^{x^2}+4 e^3 x} \, dx-8 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )-\left (16 e^3\right ) \int \frac {x}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx-\left (16 e^3\right ) \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^3}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^2 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ &=-4 \text {Ei}(2 \log (x))-8 \text {Ei}(3 \log (x))+\frac {2 (1-x) x}{\log (x)}+4 \text {li}(x)-4 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right ) \text {li}(x)+2 \int \frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log ^2(x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log (x)} \, dx-4 \int \frac {e^{x^2} \text {li}(x)}{x \left (e^{x^2}+4 e^3 x\right )} \, dx+4 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-8 \int \frac {x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)} \, dx+8 \int \frac {e^{x^2} x \text {li}(x)}{e^{x^2}+4 e^3 x} \, dx-\left (16 e^3\right ) \int \frac {x}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx-\left (16 e^3\right ) \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^3}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^2 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ &=-8 \text {Ei}(3 \log (x))+\frac {2 (1-x) x}{\log (x)}+4 \text {li}(x)-4 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right ) \text {li}(x)+2 \int \frac {\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log ^2(x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log ^2(x)} \, dx+4 \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{x \log (x)} \, dx-4 \int \frac {e^{x^2} \text {li}(x)}{x \left (e^{x^2}+4 e^3 x\right )} \, dx-8 \int \frac {x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\log (x)} \, dx+8 \int \frac {e^{x^2} x \text {li}(x)}{e^{x^2}+4 e^3 x} \, dx-\left (16 e^3\right ) \int \frac {x}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx-\left (16 e^3\right ) \int \frac {\log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^3}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx+\left (32 e^3\right ) \int \frac {x^2 \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )}{\left (e^{x^2}+4 e^3 x\right ) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 51, normalized size = 1.65 \begin {gather*} -\frac {2 \left ((-1+x) x+2 x \log \left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )+\log ^2\left (\left (4+\frac {e^{-3+x^2}}{x}\right ) \log (5)\right )\right )}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 56, normalized size = 1.81 \begin {gather*} -\frac {2 \, {\left (x^{2} + 2 \, x \log \left (e^{\left (x^{2} - \log \relax (x) - 3\right )} \log \relax (5) + 4 \, \log \relax (5)\right ) + \log \left (e^{\left (x^{2} - \log \relax (x) - 3\right )} \log \relax (5) + 4 \, \log \relax (5)\right )^{2} - x\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.53, size = 93, normalized size = 3.00 \begin {gather*} -\frac {2 \, {\left (x^{2} + 2 \, x \log \left (4 \, x e^{3} \log \relax (5) + e^{\left (x^{2}\right )} \log \relax (5)\right ) + \log \left (4 \, x e^{3} \log \relax (5) + e^{\left (x^{2}\right )} \log \relax (5)\right )^{2} - 2 \, x \log \relax (x) - 2 \, \log \left (4 \, x e^{3} + e^{\left (x^{2}\right )}\right ) \log \relax (x) + \log \relax (x)^{2} - 7 \, x - 6 \, \log \left (4 \, x e^{3} \log \relax (5) + e^{\left (x^{2}\right )} \log \relax (5)\right ) + 9\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 63, normalized size = 2.03
method | result | size |
risch | \(-\frac {2 \ln \left (\frac {\ln \relax (5) {\mathrm e}^{x^{2}-3}}{x}+4 \ln \relax (5)\right )^{2}}{\ln \relax (x )}-\frac {4 x \ln \left (\frac {\ln \relax (5) {\mathrm e}^{x^{2}-3}}{x}+4 \ln \relax (5)\right )}{\ln \relax (x )}-\frac {2 x \left (x -1\right )}{\ln \relax (x )}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 75, normalized size = 2.42 \begin {gather*} -\frac {2 \, {\left (x^{2} + x {\left (2 \, \log \left (\log \relax (5)\right ) - 7\right )} + 2 \, {\left (x - \log \relax (x) + \log \left (\log \relax (5)\right ) - 3\right )} \log \left (4 \, x e^{3} + e^{\left (x^{2}\right )}\right ) + \log \left (4 \, x e^{3} + e^{\left (x^{2}\right )}\right )^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2} + \log \left (\log \relax (5)\right )^{2} - 6 \, \log \left (\log \relax (5)\right ) + 9\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.73, size = 72, normalized size = 2.32 \begin {gather*} \frac {2\,x}{\ln \relax (x)}-\frac {2\,x^2}{\ln \relax (x)}-\frac {2\,{\ln \left (\frac {4\,x\,\ln \relax (5)+{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-3}\,\ln \relax (5)}{x}\right )}^2}{\ln \relax (x)}-\frac {4\,x\,\ln \left (\frac {4\,x\,\ln \relax (5)+{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-3}\,\ln \relax (5)}{x}\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.76, size = 61, normalized size = 1.97 \begin {gather*} - \frac {4 x \log {\left (4 \log {\relax (5 )} + \frac {e^{x^{2} - 3} \log {\relax (5 )}}{x} \right )}}{\log {\relax (x )}} + \frac {- 2 x^{2} + 2 x}{\log {\relax (x )}} - \frac {2 \log {\left (4 \log {\relax (5 )} + \frac {e^{x^{2} - 3} \log {\relax (5 )}}{x} \right )}^{2}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________