Optimal. Leaf size=20 \[ \log \left (3 e+\frac {2 \left (1+e^{2 e^x}\right )}{x}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2+x^2+e^{2 e^x} \left (-2+4 e^x x\right )}{2 x+2 e^{2 e^x} x+3 e x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 e^{2 e^x+x}}{2+2 e^{2 e^x}+3 e x+x^2}+\frac {-2-2 e^{2 e^x}+x^2}{x \left (2+2 e^{2 e^x}+3 e x+x^2\right )}\right ) \, dx\\ &=4 \int \frac {e^{2 e^x+x}}{2+2 e^{2 e^x}+3 e x+x^2} \, dx+\int \frac {-2-2 e^{2 e^x}+x^2}{x \left (2+2 e^{2 e^x}+3 e x+x^2\right )} \, dx\\ &=4 \int \frac {e^{2 e^x+x}}{2+2 e^{2 e^x}+3 e x+x^2} \, dx+\int \left (-\frac {1}{x}+\frac {3 e+2 x}{2+2 e^{2 e^x}+3 e x+x^2}\right ) \, dx\\ &=-\log (x)+4 \int \frac {e^{2 e^x+x}}{2+2 e^{2 e^x}+3 e x+x^2} \, dx+\int \frac {3 e+2 x}{2+2 e^{2 e^x}+3 e x+x^2} \, dx\\ &=-\log (x)+4 \int \frac {e^{2 e^x+x}}{2+2 e^{2 e^x}+3 e x+x^2} \, dx+\int \left (\frac {3 e}{2+2 e^{2 e^x}+3 e x+x^2}+\frac {2 x}{2+2 e^{2 e^x}+3 e x+x^2}\right ) \, dx\\ &=-\log (x)+2 \int \frac {x}{2+2 e^{2 e^x}+3 e x+x^2} \, dx+4 \int \frac {e^{2 e^x+x}}{2+2 e^{2 e^x}+3 e x+x^2} \, dx+(3 e) \int \frac {1}{2+2 e^{2 e^x}+3 e x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 24, normalized size = 1.20 \begin {gather*} -\log (x)+\log \left (2+2 e^{2 e^x}+3 e x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 23, normalized size = 1.15 \begin {gather*} \log \left (x^{2} + 3 \, x e + 2 \, e^{\left (2 \, e^{x}\right )} + 2\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 23, normalized size = 1.15 \begin {gather*} \log \left (x^{2} + 3 \, x e + 2 \, e^{\left (2 \, e^{x}\right )} + 2\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 24, normalized size = 1.20
method | result | size |
norman | \(-\ln \relax (x )+\ln \left (2 \,{\mathrm e}^{2 \,{\mathrm e}^{x}}+3 x \,{\mathrm e}+x^{2}+2\right )\) | \(24\) |
risch | \(-\ln \relax (x )+\ln \left (\frac {3 x \,{\mathrm e}}{2}+\frac {x^{2}}{2}+{\mathrm e}^{2 \,{\mathrm e}^{x}}+1\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 23, normalized size = 1.15 \begin {gather*} \log \left (\frac {1}{2} \, x^{2} + \frac {3}{2} \, x e + e^{\left (2 \, e^{x}\right )} + 1\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 23, normalized size = 1.15 \begin {gather*} \ln \left (2\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+3\,x\,\mathrm {e}+x^2+2\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 26, normalized size = 1.30 \begin {gather*} - \log {\relax (x )} + \log {\left (\frac {x^{2}}{2} + \frac {3 e x}{2} + e^{2 e^{x}} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________