Optimal. Leaf size=25 \[ e^{\left (4+e^4\right ) x \left (-5+x+\frac {\log (x)}{\log \left (\frac {e}{3}\right )}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 21.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {\left (100 x-40 x^2+4 x^3+e^4 \left (25 x-10 x^2+x^3\right )\right ) \log ^2\left (\frac {e}{3}\right )+\left (-40 x+8 x^2+e^4 \left (-10 x+2 x^2\right )\right ) \log \left (\frac {e}{3}\right ) \log (x)+\left (4 x+e^4 x\right ) \log ^2(x)}{\log ^2\left (\frac {e}{3}\right )}\right ) \left (\left (100-80 x+12 x^2+e^4 \left (25-20 x+3 x^2\right )\right ) \log ^2\left (\frac {e}{3}\right )+\left (8+2 e^4\right ) \log (x)+\left (4+e^4\right ) \log ^2(x)+\log \left (\frac {e}{3}\right ) \left (-40+8 x+e^4 (-10+2 x)+\left (-40+16 x+e^4 (-10+4 x)\right ) \log (x)\right )\right )}{\log ^2\left (\frac {e}{3}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \exp \left (\frac {\left (100 x-40 x^2+4 x^3+e^4 \left (25 x-10 x^2+x^3\right )\right ) \log ^2\left (\frac {e}{3}\right )+\left (-40 x+8 x^2+e^4 \left (-10 x+2 x^2\right )\right ) \log \left (\frac {e}{3}\right ) \log (x)+\left (4 x+e^4 x\right ) \log ^2(x)}{\log ^2\left (\frac {e}{3}\right )}\right ) \left (\left (100-80 x+12 x^2+e^4 \left (25-20 x+3 x^2\right )\right ) \log ^2\left (\frac {e}{3}\right )+\left (8+2 e^4\right ) \log (x)+\left (4+e^4\right ) \log ^2(x)+\log \left (\frac {e}{3}\right ) \left (-40+8 x+e^4 (-10+2 x)+\left (-40+16 x+e^4 (-10+4 x)\right ) \log (x)\right )\right ) \, dx}{\log ^2\left (\frac {e}{3}\right )}\\ &=\frac {\int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) \left (4+e^4\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \left (3 x^2 (-1+\log (3))^2+5 \left (3-8 \log (3)+5 \log ^2(3)\right )-x \left (18-40 \log (3)+20 \log ^2(3)+\log (9)\right )+2 \left (-4+\log (243)+2 x \log \left (\frac {e}{3}\right )\right ) \log (x)+\log ^2(x)\right ) \, dx}{\log ^2\left (\frac {e}{3}\right )}\\ &=\frac {\left (4+e^4\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \left (3 x^2 (-1+\log (3))^2+5 \left (3-8 \log (3)+5 \log ^2(3)\right )-x \left (18-40 \log (3)+20 \log ^2(3)+\log (9)\right )+2 \left (-4+\log (243)+2 x \log \left (\frac {e}{3}\right )\right ) \log (x)+\log ^2(x)\right ) \, dx}{(1-\log (3))^2}\\ &=\frac {\left (4+e^4\right ) \int \left (5 \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} (3-5 \log (3)) (1-\log (3))+3 \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{2-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} (-1+\log (3))^2-\exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{1-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \left (18-40 \log (3)+20 \log ^2(3)+\log (9)\right )+2 \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \left (-4+\log (243)+2 x \log \left (\frac {e}{3}\right )\right ) \log (x)+\exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log ^2(x)\right ) \, dx}{(1-\log (3))^2}\\ &=\left (3 \left (4+e^4\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{2-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \, dx+\frac {\left (4+e^4\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log ^2(x) \, dx}{(1-\log (3))^2}+\frac {\left (2 \left (4+e^4\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \left (-4+\log (243)+2 x \log \left (\frac {e}{3}\right )\right ) \log (x) \, dx}{(1-\log (3))^2}-\frac {\left (\left (4+e^4\right ) \left (18-40 \log (3)+20 \log ^2(3)+\log (9)\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{1-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \, dx}{(1-\log (3))^2}+\frac {\left (5 \left (4+e^4\right ) (3-\log (243))\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \, dx}{1-\log (3)}\\ &=\left (3 \left (4+e^4\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{2-\frac {10 \left (4+e^4\right ) x}{1-\log (3)}+\frac {2 \left (4+e^4\right ) x^2}{1-\log (3)}} \, dx+\frac {\left (4+e^4\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log ^2(x) \, dx}{(1-\log (3))^2}+\frac {\left (2 \left (4+e^4\right )\right ) \int \left (-4 \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \left (1-\frac {\log (243)}{4}\right ) \log (x)+2 \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{1-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log \left (\frac {e}{3}\right ) \log (x)\right ) \, dx}{(1-\log (3))^2}-\frac {\left (\left (4+e^4\right ) \left (18-40 \log (3)+20 \log ^2(3)+\log (9)\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{1-\frac {10 \left (4+e^4\right ) x}{1-\log (3)}+\frac {2 \left (4+e^4\right ) x^2}{1-\log (3)}} \, dx}{(1-\log (3))^2}+\frac {\left (5 \left (4+e^4\right ) (3-\log (243))\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \, dx}{1-\log (3)}\\ &=\left (3 \left (4+e^4\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{2-\frac {10 \left (4+e^4\right ) x}{1-\log (3)}+\frac {2 \left (4+e^4\right ) x^2}{1-\log (3)}} \, dx+\frac {\left (4+e^4\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log ^2(x) \, dx}{(1-\log (3))^2}+\frac {\left (4 \left (4+e^4\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{1-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log (x) \, dx}{1-\log (3)}-\frac {\left (\left (4+e^4\right ) \left (18-40 \log (3)+20 \log ^2(3)+\log (9)\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{1-\frac {10 \left (4+e^4\right ) x}{1-\log (3)}+\frac {2 \left (4+e^4\right ) x^2}{1-\log (3)}} \, dx}{(1-\log (3))^2}+\frac {\left (5 \left (4+e^4\right ) (3-\log (243))\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \, dx}{1-\log (3)}-\frac {\left (2 \left (4+e^4\right ) (4-\log (243))\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log (x) \, dx}{(1-\log (3))^2}\\ &=\left (3 \left (4+e^4\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{2-\frac {10 \left (4+e^4\right ) x}{1-\log (3)}+\frac {2 \left (4+e^4\right ) x^2}{1-\log (3)}} \, dx+\frac {\left (4+e^4\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log ^2(x) \, dx}{(1-\log (3))^2}+\frac {\left (4 \left (4+e^4\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{1-\frac {10 \left (4+e^4\right ) x}{1-\log (3)}+\frac {2 \left (4+e^4\right ) x^2}{1-\log (3)}} \log (x) \, dx}{1-\log (3)}-\frac {\left (\left (4+e^4\right ) \left (18-40 \log (3)+20 \log ^2(3)+\log (9)\right )\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{1-\frac {10 \left (4+e^4\right ) x}{1-\log (3)}+\frac {2 \left (4+e^4\right ) x^2}{1-\log (3)}} \, dx}{(1-\log (3))^2}+\frac {\left (5 \left (4+e^4\right ) (3-\log (243))\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \, dx}{1-\log (3)}-\frac {\left (2 \left (4+e^4\right ) (4-\log (243))\right ) \int \exp \left (\frac {\left (4+e^4\right ) x \left ((-5+x)^2 (-1+\log (3))^2+\log ^2(x)\right )}{(-1+\log (3))^2}\right ) x^{-\frac {2 \left (4+e^4\right ) (-5+x) x}{-1+\log (3)}} \log (x) \, dx}{(1-\log (3))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 3.08, size = 200, normalized size = 8.00 \begin {gather*} \frac {\int e^{\frac {\left (100 x-40 x^2+4 x^3+e^4 \left (25 x-10 x^2+x^3\right )\right ) \log ^2\left (\frac {e}{3}\right )+\left (-40 x+8 x^2+e^4 \left (-10 x+2 x^2\right )\right ) \log \left (\frac {e}{3}\right ) \log (x)+\left (4 x+e^4 x\right ) \log ^2(x)}{\log ^2\left (\frac {e}{3}\right )}} \left (\left (100-80 x+12 x^2+e^4 \left (25-20 x+3 x^2\right )\right ) \log ^2\left (\frac {e}{3}\right )+\left (8+2 e^4\right ) \log (x)+\left (4+e^4\right ) \log ^2(x)+\log \left (\frac {e}{3}\right ) \left (-40+8 x+e^4 (-10+2 x)+\left (-40+16 x+e^4 (-10+4 x)\right ) \log (x)\right )\right ) \, dx}{\log ^2\left (\frac {e}{3}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.82, size = 169, normalized size = 6.76 \begin {gather*} e^{\left (\frac {4 \, x^{3} + {\left (4 \, x^{3} - 40 \, x^{2} + {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{4} + 100 \, x\right )} \log \relax (3)^{2} + {\left (x e^{4} + 4 \, x\right )} \log \relax (x)^{2} - 40 \, x^{2} + {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{4} - 2 \, {\left (4 \, x^{3} - 40 \, x^{2} + {\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{4} + 100 \, x\right )} \log \relax (3) + 2 \, {\left (4 \, x^{2} + {\left (x^{2} - 5 \, x\right )} e^{4} - {\left (4 \, x^{2} + {\left (x^{2} - 5 \, x\right )} e^{4} - 20 \, x\right )} \log \relax (3) - 20 \, x\right )} \log \relax (x) + 100 \, x}{\log \relax (3)^{2} - 2 \, \log \relax (3) + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 6.34, size = 118, normalized size = 4.72 \begin {gather*} e^{\left (x^{3} e^{4} + 4 \, x^{3} - 10 \, x^{2} e^{4} + \frac {2 \, x^{2} e^{4} \log \relax (x)}{\log \left (\frac {1}{3} \, e\right )} - 40 \, x^{2} + 25 \, x e^{4} + \frac {x e^{4} \log \relax (x)^{2}}{\log \left (\frac {1}{3} \, e\right )^{2}} + \frac {8 \, x^{2} \log \relax (x)}{\log \left (\frac {1}{3} \, e\right )} - \frac {10 \, x e^{4} \log \relax (x)}{\log \left (\frac {1}{3} \, e\right )} + 100 \, x + \frac {4 \, x \log \relax (x)^{2}}{\log \left (\frac {1}{3} \, e\right )^{2}} - \frac {40 \, x \log \relax (x)}{\log \left (\frac {1}{3} \, e\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.44, size = 90, normalized size = 3.60
method | result | size |
default | \({\mathrm e}^{\frac {\left (\left (x^{3}-10 x^{2}+25 x \right ) {\mathrm e}^{4}+4 x^{3}-40 x^{2}+100 x \right ) \ln \left (\frac {{\mathrm e}}{3}\right )^{2}+\left (\left (2 x^{2}-10 x \right ) {\mathrm e}^{4}+8 x^{2}-40 x \right ) \ln \relax (x ) \ln \left (\frac {{\mathrm e}}{3}\right )+\left (x \,{\mathrm e}^{4}+4 x \right ) \ln \relax (x )^{2}}{\ln \left (\frac {{\mathrm e}}{3}\right )^{2}}}\) | \(90\) |
norman | \({\mathrm e}^{\frac {\left (\left (x^{3}-10 x^{2}+25 x \right ) {\mathrm e}^{4}+4 x^{3}-40 x^{2}+100 x \right ) \ln \left (\frac {{\mathrm e}}{3}\right )^{2}+\left (\left (2 x^{2}-10 x \right ) {\mathrm e}^{4}+8 x^{2}-40 x \right ) \ln \relax (x ) \ln \left (\frac {{\mathrm e}}{3}\right )+\left (x \,{\mathrm e}^{4}+4 x \right ) \ln \relax (x )^{2}}{\ln \left (\frac {{\mathrm e}}{3}\right )^{2}}}\) | \(90\) |
risch | \(\frac {{\mathrm e}^{\frac {x \left (x \ln \relax (3)-\ln \relax (x )-5 \ln \relax (3)-x +5\right )^{2} \left (4+{\mathrm e}^{4}\right )}{\left (\ln \relax (3)-1\right )^{2}}} \ln \relax (3)^{2}}{\left (1-\ln \relax (3)\right )^{2}}-\frac {2 \,{\mathrm e}^{\frac {x \left (x \ln \relax (3)-\ln \relax (x )-5 \ln \relax (3)-x +5\right )^{2} \left (4+{\mathrm e}^{4}\right )}{\left (\ln \relax (3)-1\right )^{2}}} \ln \relax (3)}{\left (1-\ln \relax (3)\right )^{2}}+\frac {{\mathrm e}^{\frac {x \left (x \ln \relax (3)-\ln \relax (x )-5 \ln \relax (3)-x +5\right )^{2} \left (4+{\mathrm e}^{4}\right )}{\left (\ln \relax (3)-1\right )^{2}}}}{\left (1-\ln \relax (3)\right )^{2}}\) | \(132\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.78, size = 142, normalized size = 5.68 \begin {gather*} \frac {{\left (\log \relax (3)^{2} - 2 \, \log \relax (3) + 1\right )} e^{\left (x^{3} e^{4} + 4 \, x^{3} - 10 \, x^{2} e^{4} - \frac {2 \, x^{2} e^{4} \log \relax (x)}{\log \relax (3) - 1} + \frac {x e^{4} \log \relax (x)^{2}}{\log \relax (3)^{2} - 2 \, \log \relax (3) + 1} - 40 \, x^{2} + 25 \, x e^{4} - \frac {8 \, x^{2} \log \relax (x)}{\log \relax (3) - 1} + \frac {10 \, x e^{4} \log \relax (x)}{\log \relax (3) - 1} + \frac {4 \, x \log \relax (x)^{2}}{\log \relax (3)^{2} - 2 \, \log \relax (3) + 1} + 100 \, x + \frac {40 \, x \log \relax (x)}{\log \relax (3) - 1}\right )}}{\log \left (\frac {1}{3} \, e\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.25, size = 362, normalized size = 14.48 \begin {gather*} {\left (\frac {1}{9}\right )}^{\frac {100\,x+25\,x\,{\mathrm {e}}^4-10\,x^2\,{\mathrm {e}}^4+x^3\,{\mathrm {e}}^4-40\,x^2+4\,x^3}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,x^{\frac {2\,\left (20\,x+5\,x\,{\mathrm {e}}^4-x^2\,{\mathrm {e}}^4-4\,x^2\right )}{\ln \relax (3)-1}}\,{\mathrm {e}}^{\frac {x^3\,{\mathrm {e}}^4\,{\ln \relax (3)}^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{-\frac {10\,x^2\,{\mathrm {e}}^4\,{\ln \relax (3)}^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^4\,{\ln \relax (x)}^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {x^3\,{\mathrm {e}}^4}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{-\frac {10\,x^2\,{\mathrm {e}}^4}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {100\,x\,{\ln \relax (3)}^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {100\,x}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {4\,x^3\,{\ln \relax (3)}^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{-\frac {40\,x^2\,{\ln \relax (3)}^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {25\,x\,{\mathrm {e}}^4\,{\ln \relax (3)}^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {4\,x\,{\ln \relax (x)}^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {4\,x^3}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{-\frac {40\,x^2}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}}\,{\mathrm {e}}^{\frac {25\,x\,{\mathrm {e}}^4}{{\ln \relax (3)}^2-2\,\ln \relax (3)+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.92, size = 90, normalized size = 3.60 \begin {gather*} e^{\frac {\left (4 x + x e^{4}\right ) \log {\relax (x )}^{2} + \left (8 x^{2} - 40 x + \left (2 x^{2} - 10 x\right ) e^{4}\right ) \log {\left (\frac {e}{3} \right )} \log {\relax (x )} + \left (4 x^{3} - 40 x^{2} + 100 x + \left (x^{3} - 10 x^{2} + 25 x\right ) e^{4}\right ) \log {\left (\frac {e}{3} \right )}^{2}}{\log {\left (\frac {e}{3} \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________