Optimal. Leaf size=21 \[ -2 \left (-x+e^{\frac {1}{2} \left (3+e^2\right )+x} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 37, normalized size of antiderivative = 1.76, number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2176, 2194} \begin {gather*} 2 x+2 e^{x+\frac {1}{2} \left (3+e^2\right )}-2 e^{x+\frac {1}{2} \left (3+e^2\right )} (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 x+\int e^{\frac {1}{2} \left (3+e^2\right )+x} (-2-2 x) \, dx\\ &=2 x-2 e^{\frac {1}{2} \left (3+e^2\right )+x} (1+x)+2 \int e^{\frac {1}{2} \left (3+e^2\right )+x} \, dx\\ &=2 e^{\frac {1}{2} \left (3+e^2\right )+x}+2 x-2 e^{\frac {1}{2} \left (3+e^2\right )+x} (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 1.00 \begin {gather*} 2 x-2 e^{\frac {3}{2}+\frac {e^2}{2}+x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 15, normalized size = 0.71 \begin {gather*} -2 \, x e^{\left (x + \frac {1}{2} \, e^{2} + \frac {3}{2}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 1.00 \begin {gather*} -2 \, x e^{\left (x + e^{\left (-\log \relax (2) + \log \left (e^{2} + 3\right )\right )}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 16, normalized size = 0.76
method | result | size |
risch | \(-2 x \,{\mathrm e}^{\frac {{\mathrm e}^{2}}{2}+\frac {3}{2}+x}+2 x\) | \(16\) |
norman | \(-2 \,{\mathrm e}^{{\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x} x +2 x\) | \(22\) |
default | \(2 x -2 \,{\mathrm e}^{{\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x} \left ({\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x \right )+3 \,{\mathrm e}^{{\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x}+{\mathrm e}^{{\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x} {\mathrm e}^{2}\) | \(67\) |
derivativedivides | \(2 \,{\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+2 x -2 \,{\mathrm e}^{{\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x} \left ({\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x \right )+3 \,{\mathrm e}^{{\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x}+{\mathrm e}^{{\mathrm e}^{\ln \left ({\mathrm e}^{2}+3\right )-\ln \relax (2)}+x} {\mathrm e}^{2}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 37, normalized size = 1.76 \begin {gather*} -2 \, {\left (x e^{\left (\frac {1}{2} \, e^{2} + \frac {3}{2}\right )} - e^{\left (\frac {1}{2} \, e^{2} + \frac {3}{2}\right )}\right )} e^{x} + 2 \, x - 2 \, e^{\left (x + \frac {1}{2} \, e^{2} + \frac {3}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 15, normalized size = 0.71 \begin {gather*} -2\,x\,\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^2}{2}}\,{\mathrm {e}}^{3/2}\,{\mathrm {e}}^x-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 17, normalized size = 0.81 \begin {gather*} - 2 x e^{x + \frac {3}{2} + \frac {e^{2}}{2}} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________