Optimal. Leaf size=31 \[ \left (-2+e^{\frac {e^{4 e^x}}{-5+x}} \left (-e^5+e^x+x\right )\right ) \log (3) \]
________________________________________________________________________________________
Rubi [B] time = 0.50, antiderivative size = 120, normalized size of antiderivative = 3.87, number of steps used = 2, number of rules used = 2, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {27, 2288} \begin {gather*} \frac {e^{4 e^x-\frac {e^{4 e^x}}{5-x}} \left (e^x \left (-4 x^2+20 x-4 e^5 (5-x)+1\right ) \log (3)+4 e^{2 x} (5-x) \log (3)-\left (e^5-x\right ) \log (3)\right )}{\left (\frac {4 e^{x+4 e^x}}{5-x}+\frac {e^{4 e^x}}{(5-x)^2}\right ) (5-x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {e^{4 e^x}}{-5+x}} \left (\left (25-10 x+x^2\right ) \log (3)+e^x \left (25-10 x+x^2\right ) \log (3)+e^{4 e^x} \left (\left (e^5-x\right ) \log (3)+e^{2 x} (-20+4 x) \log (3)+e^x \left (-1+e^5 (20-4 x)-20 x+4 x^2\right ) \log (3)\right )\right )}{(-5+x)^2} \, dx\\ &=\frac {e^{4 e^x-\frac {e^{4 e^x}}{5-x}} \left (4 e^{2 x} (5-x) \log (3)-\left (e^5-x\right ) \log (3)+e^x \left (1-4 e^5 (5-x)+20 x-4 x^2\right ) \log (3)\right )}{\left (\frac {e^{4 e^x}}{(5-x)^2}+\frac {4 e^{4 e^x+x}}{5-x}\right ) (5-x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 0.90 \begin {gather*} e^{\frac {e^{4 e^x}}{-5+x}} \left (-e^5+e^x+x\right ) \log (3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 28, normalized size = 0.90 \begin {gather*} {\left ({\left (x - e^{5}\right )} \log \relax (3) + e^{x} \log \relax (3)\right )} e^{\left (\frac {e^{\left (4 \, e^{x}\right )}}{x - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x^{2} - 10 \, x + 25\right )} e^{x} \log \relax (3) + {\left (4 \, {\left (x - 5\right )} e^{\left (2 \, x\right )} \log \relax (3) + {\left (4 \, x^{2} - 4 \, {\left (x - 5\right )} e^{5} - 20 \, x - 1\right )} e^{x} \log \relax (3) - {\left (x - e^{5}\right )} \log \relax (3)\right )} e^{\left (4 \, e^{x}\right )} + {\left (x^{2} - 10 \, x + 25\right )} \log \relax (3)\right )} e^{\left (\frac {e^{\left (4 \, e^{x}\right )}}{x - 5}\right )}}{x^{2} - 10 \, x + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 27, normalized size = 0.87
method | result | size |
risch | \(-\left ({\mathrm e}^{5}-x -{\mathrm e}^{x}\right ) \ln \relax (3) {\mathrm e}^{\frac {{\mathrm e}^{4 \,{\mathrm e}^{x}}}{x -5}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 29, normalized size = 0.94 \begin {gather*} {\left (x \log \relax (3) - e^{5} \log \relax (3) + e^{x} \log \relax (3)\right )} e^{\left (\frac {e^{\left (4 \, e^{x}\right )}}{x - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.89, size = 29, normalized size = 0.94 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{4\,{\mathrm {e}}^x}}{x-5}}\,\left (x\,\ln \relax (3)-{\mathrm {e}}^5\,\ln \relax (3)+{\mathrm {e}}^x\,\ln \relax (3)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 23.42, size = 29, normalized size = 0.94 \begin {gather*} \left (x \log {\relax (3 )} + e^{x} \log {\relax (3 )} - e^{5} \log {\relax (3 )}\right ) e^{\frac {e^{4 e^{x}}}{x - 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________