Optimal. Leaf size=19 \[ \frac {x}{-1+\frac {(4-x) \log (2)}{(6+x)^2}} \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 43, normalized size of antiderivative = 2.26, number of steps used = 4, number of rules used = 4, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {1680, 1814, 21, 8} \begin {gather*} -\frac {\log (2) (x (16+\log (2))+4 (9-\log (2)))}{x^2+x (12+\log (2))+4 (9-\log (2))}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 21
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {-16 x^4+24 x^2 \log (2) (24+\log (2))+3 \log ^2(2) (8+\log (2)) (40+\log (2))-16 x \log (2) \left (120+36 \log (2)+\log ^2(2)\right )}{\left (4 x^2-\log (2) (40+\log (2))\right )^2} \, dx,x,x+\frac {1}{4} (24+2 \log (2))\right )\\ &=-\frac {\log (2) (4 (9-\log (2))+x (16+\log (2)))}{x^2+4 (9-\log (2))+x (12+\log (2))}+\frac {\operatorname {Subst}\left (\int \frac {-8 x^2 \log (2) (40+\log (2))+2 \log ^2(2) (40+\log (2))^2}{4 x^2-\log (2) (40+\log (2))} \, dx,x,x+\frac {1}{4} (24+2 \log (2))\right )}{2 \log (2) (40+\log (2))}\\ &=-\frac {\log (2) (4 (9-\log (2))+x (16+\log (2)))}{x^2+4 (9-\log (2))+x (12+\log (2))}-\operatorname {Subst}\left (\int 1 \, dx,x,x+\frac {1}{4} (24+2 \log (2))\right )\\ &=-x-\frac {\log (2) (4 (9-\log (2))+x (16+\log (2)))}{x^2+4 (9-\log (2))+x (12+\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 115, normalized size = 6.05 \begin {gather*} -\frac {x^3 \log (2) (40+\log (2))+x^2 \log (2) \left (480+52 \log (2)+\log ^2(2)\right )+x \left (64 \log ^3(2)+\log ^4(2)-6 \log ^2(2) (-150+\log (4))-192 \log (2) (-12+\log (4))-432 \log (4)\right )-4 (-9+\log (2)) \left (52 \log ^2(2)+\log ^3(2)-\log (4) \log (64)\right )}{\log (2) (40+\log (2)) \left (x^2-4 (-9+\log (2))+x (12+\log (2))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.89, size = 49, normalized size = 2.58 \begin {gather*} -\frac {x^{3} + {\left (x - 4\right )} \log \relax (2)^{2} + 12 \, x^{2} + {\left (x^{2} + 12 \, x + 36\right )} \log \relax (2) + 36 \, x}{x^{2} + {\left (x - 4\right )} \log \relax (2) + 12 \, x + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 46, normalized size = 2.42 \begin {gather*} -x - \frac {x \log \relax (2)^{2} + 16 \, x \log \relax (2) - 4 \, \log \relax (2)^{2} + 36 \, \log \relax (2)}{x^{2} + x \log \relax (2) + 12 \, x - 4 \, \log \relax (2) + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 39, normalized size = 2.05
method | result | size |
gosper | \(\frac {-x^{3}+12 x \ln \relax (2)-48 \ln \relax (2)+108 x +432}{x \ln \relax (2)+x^{2}-4 \ln \relax (2)+12 x +36}\) | \(39\) |
norman | \(\frac {\left (108+12 \ln \relax (2)\right ) x -x^{3}-48 \ln \relax (2)+432}{x \ln \relax (2)+x^{2}-4 \ln \relax (2)+12 x +36}\) | \(39\) |
default | \(-x +\frac {\ln \relax (2) \left (\left (-16-\ln \relax (2)\right ) x +4 \ln \relax (2)-36\right )}{x \ln \relax (2)+x^{2}-4 \ln \relax (2)+12 x +36}\) | \(40\) |
risch | \(-x +\frac {\left (-\ln \relax (2)^{2}-16 \ln \relax (2)\right ) x +4 \ln \relax (2)^{2}-36 \ln \relax (2)}{x \ln \relax (2)+x^{2}-4 \ln \relax (2)+12 x +36}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 45, normalized size = 2.37 \begin {gather*} -x - \frac {{\left (\log \relax (2)^{2} + 16 \, \log \relax (2)\right )} x - 4 \, \log \relax (2)^{2} + 36 \, \log \relax (2)}{x^{2} + x {\left (\log \relax (2) + 12\right )} - 4 \, \log \relax (2) + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.90, size = 322, normalized size = 16.95 \begin {gather*} \left (\sum _{k=1}^4\ln \left (-{\ln \relax (2)}^3\,\left (1728000\,\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )+864000\,x+259200\,\ln \relax (2)+\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,\ln \relax (2)\,916800+\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,x\,288000+163200\,x\,\ln \relax (2)-\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,{\ln \relax (2)}^2\,15920-\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,{\ln \relax (2)}^3\,8464-\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,{\ln \relax (2)}^4\,348-\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,{\ln \relax (2)}^5\,4-21600\,x\,{\ln \relax (2)}^2-800\,x\,{\ln \relax (2)}^3-20800\,{\ln \relax (2)}^2-6200\,{\ln \relax (2)}^3-200\,{\ln \relax (2)}^4+\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,x\,\ln \relax (2)\,384800+\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,x\,{\ln \relax (2)}^2\,70880+\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,x\,{\ln \relax (2)}^3\,4416+\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,x\,{\ln \relax (2)}^4\,112+\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\,x\,{\ln \relax (2)}^5+5184000\right )\,2\right )\,\mathrm {root}\left (625\,{\ln \relax (2)}^6\,{\left (\ln \relax (2)+40\right )}^2,z,k\right )\right )-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.68, size = 42, normalized size = 2.21 \begin {gather*} - x - \frac {x \left (\log {\relax (2 )}^{2} + 16 \log {\relax (2 )}\right ) - 4 \log {\relax (2 )}^{2} + 36 \log {\relax (2 )}}{x^{2} + x \left (\log {\relax (2 )} + 12\right ) - 4 \log {\relax (2 )} + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________