Optimal. Leaf size=18 \[ \left (4+e^{2 e^e}\right ) x \left (1+e^{10}+\log (5)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {8} \begin {gather*} \left (4+e^{2 e^e}\right ) x \left (1+e^{10}+\log (5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (4+e^{2 e^e}\right ) x \left (1+e^{10}+\log (5)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 31, normalized size = 1.72 \begin {gather*} 4 x+4 e^{10} x+4 x \log (5)+e^{2 e^e} x \left (1+e^{10}+\log (5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 31, normalized size = 1.72 \begin {gather*} 4 \, x e^{10} + {\left (x e^{10} + x \log \relax (5) + x\right )} e^{\left (2 \, e^{e}\right )} + 4 \, x \log \relax (5) + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 25, normalized size = 1.39 \begin {gather*} {\left ({\left (e^{10} + \log \relax (5) + 1\right )} e^{\left (2 \, e^{e}\right )} + 4 \, e^{10} + 4 \, \log \relax (5) + 4\right )} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 30, normalized size = 1.67
method | result | size |
default | \(\left (\left (\ln \relax (5)+{\mathrm e}^{10}+1\right ) {\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}}}+4 \ln \relax (5)+4 \,{\mathrm e}^{10}+4\right ) x\) | \(30\) |
norman | \(\left ({\mathrm e}^{10} {\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}}}+{\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}}} \ln \relax (5)+4 \,{\mathrm e}^{10}+{\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}}}+4 \ln \relax (5)+4\right ) x\) | \(41\) |
risch | \({\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}}} x \,{\mathrm e}^{10}+{\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}}} x \ln \relax (5)+{\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}}} x +4 x \ln \relax (5)+4 x \,{\mathrm e}^{10}+4 x\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 1.39 \begin {gather*} {\left ({\left (e^{10} + \log \relax (5) + 1\right )} e^{\left (2 \, e^{e}\right )} + 4 \, e^{10} + 4 \, \log \relax (5) + 4\right )} x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.00, size = 25, normalized size = 1.39 \begin {gather*} x\,\left (4\,{\mathrm {e}}^{10}+4\,\ln \relax (5)+{\mathrm {e}}^{2\,{\mathrm {e}}^{\mathrm {e}}}\,\left ({\mathrm {e}}^{10}+\ln \relax (5)+1\right )+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 29, normalized size = 1.61 \begin {gather*} x \left (4 + 4 \log {\relax (5 )} + 4 e^{10} + \left (1 + \log {\relax (5 )} + e^{10}\right ) e^{2 e^{e}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________